Reference Stress Estimation for Anisotropic Materials Using Linear Elastic Finite Element Results

2021 ◽  
Author(s):  
Richard Green ◽  
Brent Scaletta
Author(s):  
Brent Scaletta ◽  
Richard Green

Abstract Components in the hot section of a gas turbine engine experience extended high temperature dwells and cycles composed of multiple starts, changes in load, and variable duration. These loading profiles can lead to damage from cyclic viscoplasticity which is heavily path dependent as dwell stress, yield strength, and stress range change constantly during operation. Since an accurate prediction of accumulated damage is critical to managing an engine, reduced order methods for tracking material behavior over complex operation cycles are necessary tools to help avoid unplanned down time and optimize cost over the operational period. One method for tracking the material behavior during path dependent cyclic viscoplasticity requires the use of reference stress. Reference stress is a bulk representative stress that can be used in conjunction with various lifing methodologies to determine component durability. Previous papers provided a method for calculating reference stress for isotropic materials using limit load estimation. The goal of this paper is to extend these methodologies to a reference stress estimation method for anisotropic materials to estimate life for single crystal turbine blades. Derived equations will be shown and results from simple Finite Element (FE) test cases will be discussed to demonstrate the accuracy of the anisotropic reference stress estimation. Once reference stress is obtained, the long term forward creep stress of a component can be estimated for any given initial stress state. This approach can be used to calculate damage during shakedown resulting from redistribution and relaxation due to plasticity and creep, which can be critical for accurately predicting remaining useful life and optimizing engine management.


1993 ◽  
Vol 17 (2) ◽  
pp. 197-214
Author(s):  
C.P.D. Fernando ◽  
R. Seshadri

An approximate method for determining limit loads of mechanical components and structures on the basis of two linear elastic finite element analyses is described. The load-control nature of the redistribution nodes (r-nodes) leads to considerable simplifications. The combined r-node equivalent stress, which can be obtained by invoking an appropriate multibar mode, can be identified with the reference stress. The method is applied to beam, framed and arched structures, and the limit load estimates obtained are reasonably accurate.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 397
Author(s):  
Yahya Ali Fageehi

This paper presents computational modeling of a crack growth path under mixed-mode loadings in linear elastic materials and investigates the influence of a hole on both fatigue crack propagation and fatigue life when subjected to constant amplitude loading conditions. Though the crack propagation is inevitable, the simulation specified the crack propagation path such that the critical structure domain was not exceeded. ANSYS Mechanical APDL 19.2 was introduced with the aid of a new feature in ANSYS: Smart Crack growth technology. It predicts the propagation direction and subsequent fatigue life for structural components using the extended finite element method (XFEM). The Paris law model was used to evaluate the mixed-mode fatigue life for both a modified four-point bending beam and a cracked plate with three holes under the linear elastic fracture mechanics (LEFM) assumption. Precise estimates of the stress intensity factors (SIFs), the trajectory of crack growth, and the fatigue life by an incremental crack propagation analysis were recorded. The findings of this analysis are confirmed in published works in terms of crack propagation trajectories under mixed-mode loading conditions.


1999 ◽  
Vol 123 (1) ◽  
pp. 33-42 ◽  
Author(s):  
A. Saxena ◽  
G. K. Ananthasuresh

Optimal design methods that use continuum mechanics models are capable of generating suitable topology, shape, and dimensions of compliant mechanisms for desired specifications. Synthesis procedures that use linear elastic finite element models are not quantitatively accurate for large displacement situations. Also, design specifications involving nonlinear force-deflection characteristics and generation of a curved path for the output port cannot be realized with linear models. In this paper, the synthesis of compliant mechanisms is performed using geometrically nonlinear finite element models that appropriately account for large displacements. Frame elements are chosen because of ease of implementation of the general approach and their ability to capture bending deformations. A method for nonlinear design sensitivity analysis is described. Examples are included to illustrate the usefulness of the synthesis method.


Author(s):  
A Strozzi ◽  
A Unsworth

The paper by O'Carrol et al. (1), which addresses the problem of an elastomeric disc indented by a spherical punch, has been evaluated. The sources of disagreement between linear elastic numerical predictions and experimental measurements noted in this paper have been critically examined in the light of finite element forecasts obtained with a package which incorporates finite elasticity effects and incompressibility.


Author(s):  
Ye-Chen Lai ◽  
Timothy C. S. Liang ◽  
Zhenxue Jia

Abstract Based on hierarchic shape functions and an effective convergence procedure, the p-version and h-p adaptive analysis capabilities were incorporated into a finite element software system, called COSMOS/M. The range of the polynomial orders can be varied from 1 to 10 for two dimensional linear elastic analysis. In the h-p adaptive analysis process, a refined mesh are first achieved via adaptive h-refinement. The p-refinement is then added on to the h-version designed mesh by uniformly increasing the degree of the polynomials. Some numerical results computed by COSMOS/M are presented to illustrate the performance of these p and h-p analysis capabilities.


2000 ◽  
Author(s):  
Chris L. Mullen ◽  
Prabin R. Tuladhar

Abstract Discussion of a Performance - Based Engineering evaluation procedure for an existing interstate highway bridge in north Mississippi. The bridge is in a highly trafficked location near the Memphis Metropolitan area and is reflective of modern design practices in Mississippi. Results are presented of nonlinear damage response and displacement ductility performance of the reinforced concrete bents and their foundations predicted using static finite element (FE) computations. The model considers the composite action of the concrete and the reinforcing steel materials under axial force, shear, torsion and flexure. The performance-based evaluation includes three-dimensional computational simulations of the nonlinear bridge system, including substructures and superstructure. The response spectrum dynamic analysis method will also be carried out on the linear elastic three-dimensional model to predict the linear elastic behavior. Field vibration measurements, including ambient and hammer-impact, were performed to calibrate the models. The computed transfer functions are currently being evaluated to correlate vibration measurements and the Finite element models.


Sign in / Sign up

Export Citation Format

Share Document