Thermal Conductivity Measurement of CVD Diamond Films Using a Modified Thermal Comparator Method

2000 ◽  
Vol 122 (4) ◽  
pp. 808-816 ◽  
Author(s):  
K. R. Cheruparambil ◽  
B. Farouk ◽  
J. E. Yehoda ◽  
N. A. Macken

Results from an experimental study on the rapid measurement of thermal conductivity of chemical vapor deposited (CVD) diamond films are presented. The classical thermal comparator method has been used successfully in the past for the measurement of thermal conductivity of bulk materials having high values of thermal resistance. Using samples of known thermal conductivity, a calibration curve is prepared. With this calibration curve, the comparator can be used to determine thermal conductivity of unknown samples. We have significantly modified and extended this technique for the measurement of materials with very low thermal resistance, i.e., CVD diamond films with high thermal conductivity. In addition to the heated probe, the modified comparator employs a thermoelectric cooling element of increase conductive heat transfer through the film. The thermal conductivity measurements are sensitive to many other factors such as the thermal contact resistances, anisotropic material properties, surrounding air currents and temperature, and ambient humidity. A comprehensive numerical model was also developed to simulate the heat transfer process for the modified comparator. The simulations were used to develop a “numerical” calibration curve that agreed well with the calibration curve obtained from our measurements. The modified method has been found to successfully measure the thermal conductivity of CVD diamond films. [S0022-1481(00)00804-5]

1999 ◽  
Author(s):  
Kumar R. Cheruparambil ◽  
Bakhtier Farouk ◽  
Joseph E. Yehoda ◽  
Nelson A. Macken

Abstract Results from an experimental study on the rapid measurement of thermal conductivity of chemical-vapor-deposited (CVD) diamond films are presented. The classical thermal comparator method has been used successfully for the measurement of thermal conductivity of bulk materials having high values of thermal resistance. Using samples of known thermal conductivity, a calibration curve is prepared. With this calibration curve, the comparator can be used to determine thermal conductivity of unknown samples. We have significantly modified and extended this technique for the measurement of materials with very low thermal resistance, i.e., CVD films with high thermal conductivity. In addition to the heated probe, the modified comparator employs a thermo-electric cooling element to increase conductive heat transfer through the film. The thermal conductivity measurements are sensitive to many other factors such as the thermal contact resistances, anisotropic material properties, surrounding air currents and temperature, and ambient humidity. A comprehensive numerical model was also developed to simulate the heat transfer process for the modified comparator. The simulations were used to develop a ‘numerical’ calibration curve that agreed well with the calibration curve obtained from our measurements. The modified method has been found to successfully measure the thermal conductivity of CVD diamond films.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Tariq Mansoor ◽  
Lubos Hes ◽  
Amany Khalil ◽  
Jiri Militky ◽  
Maros Tunak ◽  
...  

Abstract In this study, an algebraic model and its experimental verification was carried out to investigate the effect of moisture content on the heat loss that takes place due to conduction of sock fabrics. The results show that increasing moisture content in the studied socks caused a significant increase in their conductive heat loss. Plain knitted socks with different fiber composition were wetted to a saturated level, and then their moisture content was reduced stepwise. When achieving the required moisture content, the socks samples were characterized by the Alambeta testing instrument for heat transfer. Three different existing modified mathematical models for the thermal conductivity of wet fabrics were used for predicting thermal resistance of socks under wet conditions. The results from both ways are in very good agreement for all the socks at a 95% confidence level. In the above-mentioned models, the prediction of thermal resistance presents newly a combined effect of the real filling coefficient and thermal conductivity of the so-called “wet” polymers instead of dry polymers. With these modifications, the used models predicted the thermal resistance at different moisture levels. Predicted thermal resistance is converted into heat transfer (due to conduction) with a significantly high coefficient of correlation.


Author(s):  
Babafemi Olugunwa ◽  
Julia Race ◽  
Tahsin Tezdogan

Abstract Pipeline heat transfer modelling of buried pipelines is integral to the design and operation of onshore pipelines to aid the reduction of flow assurance challenges such as carbon dioxide (CO2) gas hydrate formation during pipeline transportation of dense phase CO2 in carbon capture and storage (CCS) applications. In CO2 pipelines for CCS, there are still challenges and gaps in knowledge in the pipeline transportation of supercritical CO2 due to its unique thermophysical properties as a single, dense phase liquid above its critical point. Although the design and operation of pipelines for bulk fluid transport is well established, the design stage is incomplete without the heat transfer calculations as part of the steady state hydraulic and flow assurance design stages. This paper investigates the steady state heat transfer in a buried onshore dense phase CO2 pipelines analytically using the conduction shape factor and thermal resistance method to evaluate for the heat loss from an uninsulated pipeline. A parametric study that critically analyses the effect of variation in pipeline burial depth and soil thermal conductivity on the heat transfer rate, soil thermal resistance and the overall heat transfer coefficient (OHTC) is investigated. This is done using a one-dimensional heat conduction model at constant temperature of the dense phase CO2 fluid. The results presented show that the influence of soil thermal conductivity and pipeline burial depth on the rate of heat transfer, soil thermal resistance and OHTC is dependent on the average constant ambient temperature in buried dense phase CO2 onshore pipelines. Modelling results show that there are significant effects of the ambient natural convection on the soil temperature distribution which creates a thermal influence region in the soil along the pipeline that cannot be ignored in the steady state modelling and as such should be modelled as a conjugate heat transfer problem during pipeline design.


Author(s):  
Kevin Irick ◽  
Nima Fathi

Abstract The complexity of conductive heat transfer in a structure increases with heterogeneity (e.g., multi-component solid-phase systems with a source of internal thermal heat generation). Any discontinuity of material property — especially thermal conductivity — would warrant a thorough analysis to evaluate the thermal behavior of the system of interest. Heterogeneous thermal conditions are crucial to heat transfer in nuclear fuel assemblies, because the thermal behavior within the assemblies is governed significantly by the heterogeneous thermal conditions at both the system and component levels. A variety of materials have been used as nuclear fuels, the most conventional of which is uranium dioxide, UO2. UO2 has satisfactory chemical and irradiation tolerances in thermal reactors, whereas the low thermal conductivity of porous UO2 can prove challenging. Therefore, the feasibility of enhancing the thermal conductivity of oxide fuels by adding a high-conductivity secondary solid component is still an important ongoing topic of investigation. Undoubtedly, long-term, stable development of clean nuclear energy would depend on research and development of innovative reactor designs and fuel systems. Having a better understanding of the thermal response of the unit cell of a composite that represents a fuel matrix cell would help to develop the next generation of nuclear fuel and understand potential performance enhancements. The aim of this article is to provide an assessment of a high-fidelity computational model response of heterogeneous materials with heat generation in circular fillers. Two-dimensional, steady-state systems were defined with a circular, heat-generating filler centered in a unit-cell domain. A Fortran-based finite element method (FEM) code was used to solve the heat equation on an unstructured triangular mesh of the systems. This paper presents a study on the effects of a heat-generating filler material’s relative size and thermal conductivity on effective thermal conductance, Geff, within a heterogenous material. Code verification using the method of manufactured solution (MMS) was employed, showing a second-order accurate numerical implementation. Solution verification was performed using a global deviation grid convergence index (GCI) method to assess solution convergence and estimate solution numerical uncertainty, Unum. Trend results are presented, showing variable response in Geff to filler size and thermal conductivity.


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1860 ◽  
Author(s):  
Zahid Mehmood ◽  
Ibraheem Haneef ◽  
Syed Zeeshan Ali ◽  
Florin Udrea

Minimizing conductive heat losses in Micro-Electro-Mechanical-Systems (MEMS) thermal (hot-film) flow sensors is the key to minimize the sensors’ power consumption and maximize their sensitivity. Through a comprehensive review of literature on MEMS thermal (calorimetric, time of flight, hot-film/hot-film) flow sensors published during the last two decades, we establish that for curtailing conductive heat losses in the sensors, researchers have either used low thermal conductivity substrate materials or, as a more effective solution, created low thermal conductivity membranes under the heaters/hot-films. However, no systematic experimental study exists that investigates the effect of membrane shape, membrane size, heater/hot-film length and M e m b r a n e (size) to H e a t e r (hot-film length) Ratio (MHR) on sensors’ conductive heat losses. Therefore, in this paper we have provided experimental evidence of dependence of conductive heat losses in membrane based MEMS hot-film flow sensors on MHR by using eight MEMS hot-film flow sensors, fabricated in a 1 µm silicon-on-insulator (SOI) CMOS foundry, that are thermally isolated by square and circular membranes. Experimental results demonstrate that: (a) thermal resistance of both square and circular membrane hot-film sensors increases with increasing MHR, and (b) conduction losses in square membrane based hot-film flow sensors are lower than the sensors having circular membrane. The difference (or gain) in thermal resistance of square membrane hot-film flow sensors viz-a-viz the sensors on circular membrane, however, decreases with increasing MHR. At MHR = 2, this difference is 5.2%, which reduces to 3.0% and 2.6% at MHR = 3 and MHR = 4, respectively. The study establishes that for membrane based SOI CMOS MEMS hot-film sensors, the optimum MHR is 3.35 for square membranes and 3.30 for circular membranes, beyond which the gain in sensors’ thermal efficiency (thermal resistance) is not economical due to the associated sharp increase in the sensors’ (membrane) size, which makes sensors more expensive as well as fragile. This paper hence, provides a key guideline to MEMS researchers for designing the square and circular membranes-supported micro-machined thermal (hot-film) flow sensors that are thermally most-efficient, mechanically robust and economically viable.


2016 ◽  
Vol 846 ◽  
pp. 500-505
Author(s):  
Wei Jing Dai ◽  
Yi Xiang Gan ◽  
Dorian Hanaor

Effective thermal conductivity is an important property of granular materials in engineering applications and industrial processes, including the blending and mixing of powders, sintering of ceramics and refractory metals, and electrochemical interactions in fuel cells and Li-ion batteries. The thermo-mechanical properties of granular materials with macroscopic particle sizes (above 1 mm) have been investigated experimentally and theoretically, but knowledge remains limited for materials consisting of micro/nanosized grains. In this work we study the effective thermal conductivity of micro/nanopowders under varying conditions of mechanical stress and gas pressure via the discrete thermal resistance method. In this proposed method, a unit cell of contact structure is regarded as one thermal resistor. Thermal transport between two contacting particles and through the gas phase (including conduction in the gas phase and heat transfer of solid-gas interfaces) are the main mechanisms. Due to the small size of particles, the gas phase is limited to a small volume and a simplified gas heat transfer model is applied considering the Knudsen number. During loading, changes in the gas volume and the contact area between particles are simulated by the finite element method. The thermal resistance of one contact unit is calculated through the combination of the heat transfer mechanisms. A simplified relationship between effective thermal conductivity and loading pressure can be obtained by integrating the contact units of the compacted powders.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2626
Author(s):  
Aurelia Blazejczyk ◽  
Cezariusz Jastrzebski ◽  
Michał Wierzbicki

This article introduces an innovative approach to the investigation of the conductive–radiative heat transfer mechanism in expanded polystyrene (EPS) thermal insulation at negligible convection. Closed-cell EPS foam (bulk density 14–17 kg·m−3) in the form of panels (of thickness 0.02–0.18 m) was tested with 1–15 µm graphite microparticles (GMP) at two different industrial concentrations (up to 4.3% of the EPS mass). A heat flow meter (HFM) was found to be precise enough to observe all thermal effects under study: the dependence of the total thermal conductivity on thickness, density, and GMP content, as well as the thermal resistance relative gain. An alternative explanation of the total thermal conductivity “thickness effect” is proposed. The conductive–radiative components of the total thermal conductivity were separated, by comparing measured (with and without Al-foil) and simulated (i.e., calculated based on data reported in the literature) results. This helps to elucidate why a small addition of GMP (below 4.3%) forces such an evident drop in total thermal conductivity, down to 0.03 W·m−1·K−1. As proposed, a physical cause is related to the change in mechanism of the heat transfer by conduction and radiation. The main accomplishment is discovering that the change forced by GMP in the polymer matrix thermal conduction may dominate the radiation change. Hence, the matrix conduction component change is considered to be the major cause of the observed drop in total thermal conductivity of EPS insulation. At the microscopic level of the molecules or chains (e.g., in polymers), significant differences observed in the intensity of Raman spectra and in the glass transition temperature increase on differential scanning calorimetry(DSC) thermograms, when comparing EPS foam with and without GMP, complementarily support the above statement. An additional practical achievement is finding the maximum thickness at which one may reduce the “grey” EPS insulating layer, with respect to “dotted” EPS at a required level of thermal resistance. In the case of the thickest (0.30 m) panels for a passive building, above 18% of thickness reduction is found to be possible.


Author(s):  
Y Rasihhan ◽  
F J Wallace

A simple, effective and computationally economical piston-liner thermal resistance model for diesel engine simulation is described. In the model, the detailed shape of the piston and its axial movement and interaction with liner nodes are all taken into account. An imaginary node within the piston provides the necessary temperature difference between the piston and the liner nodes for conductive heat transfer, which is expected to reverse its direction with liner insulation. In the liner, an axially symmetric two-dimensional heat-transfer model is used. Later the piston-liner model is tuned for the experimental single cylinder, direct injection, Petter PH 1W engine used at Bath University, against the experimental piston temperature and liner temperature distribution.


Sign in / Sign up

Export Citation Format

Share Document