Fluid Flow Phenomena in Materials Processing—The 2000 Freeman Scholar Lecture

2000 ◽  
Vol 123 (2) ◽  
pp. 173-210 ◽  
Author(s):  
Yogesh Jaluria

There has been an explosive growth in the development of new materials and processing techniques in recent years to meet the challenges posed by new applications arising in electronics, telecommunications, aerospace, transportation, and other new and traditional areas. Semiconductor and optical materials, composites, ceramics, biomaterials, advanced polymers, and specialized alloys are some of the materials that have seen intense interest and research activity over the last two decades. New approaches have been developed to improve product quality, reduce cost, and achieve essentially custom-made material properties. Current trends indicate continued research effort in materials processing as demand for specialized materials continues to increase. Fluid flow that arises in many materials processing applications is critical in the determination of the quality and characteristics of the final product and in the control, operation, and optimization of the system. This review is focused on the fluid flow phenomena underlying a wide variety of materials processing operations such as optical fiber manufacture, crystal growth for semiconductor fabrication, casting, thin film manufacture, and polymer processing. The review outlines the main aspects that must be considered in materials processing, the basic considerations that are common across fluid flow phenomena involved in different areas, the present state of the art in analytical, experimental and numerical techniques that may be employed to study the flow, and the effect of fluid flow on the process and the product. The main issues that distinguish flow in materials processing from that in other fields, as well as the similar aspects, are outlined. The complexities that are inherent in materials processing, such as large material property changes, complicated domains, multiple regions, combined mechanisms, and complex boundary conditions are discussed. The governing equations and boundary conditions for typical processes, along with important parameters, common simplifications and specialized methods employed to study these processes are outlined. The field is vast and it is not possible to consider all the different techniques employed for materials processing. Among the processes discussed in some detail are polymer extrusion, optical fiber drawing, casting, continuous processing, and chemical vapor deposition for the fabrication of thin films. Besides indicating the effect of fluid flow on the final product, these results illustrate the nature of the basic problems, solution strategies, and issues involved in the area. The review also discusses present trends in materials processing and suggests future research needs. Of particular importance are well-controlled and well-designed experiments that would provide inputs for model validation and for increased understanding of the underlying fluid flow mechanisms. Also, accurate material property data are very much needed to obtain accurate and repeatable results that can form the basis for design and optimization. There is need for the development of innovative numerical and experimental approaches to study the complex flows that commonly arise in materials processing. Materials processing techniques that are in particular need of further detailed work are listed. Finally, it is stessed that it is critical to understand the basic mechanisms that determine changes in the material, in addition to the fluid flow aspects, in order to impact on the overall field of materials processing.

Author(s):  
Yogesh Jaluria

This paper reviews the active and growing field of thermal processing of materials, with a particular emphasis on the linking of basic research with engineering aspects. In order to meet the challenges posed by new applications arising in electronics, telecommunications, aerospace, transportation, and other areas, extensive work has been done on the development of new materials and processing techniques in recent years. Among the materials that have seen intense interest and research activity over the last two decades are semiconductor and optical materials, composites, ceramics, biomaterials, advanced polymers, and specialized alloys. New processing techniques have been developed to improve product quality, reduce cost, and control material properties. However, it is necessary to couple research efforts directed at the fundamental mechanisms that govern materials processing with engineering issues that arise in the process, such as system design, control and optimization, process feasibility and selection of operating conditions to achieve desired product characteristics. Many traditional and emerging materials processing applications involve thermal transport, which plays a critical role in the determination of the quality and characteristics of the final product and in the operation, control, and design of the system. This review is directed at the heat and mass transfer phenomena underlying a wide variety of materials processing operations, such as optical fiber manufacture, crystal growth for semiconductor fabrication, casting, thin film manufacture, and polymer processing, and at the engineering aspects that arise in actual practical systems. The review outlines the basic and applied considerations in thermal materials processing, available solution techniques, and the effect of the transport on the process, the product and the system. The complexities that are inherent in materials processing, such as large material property changes, complicated and multiple regions, combined heat and mass transfer mechanisms, and complex boundary conditions are discussed. The governing equations and boundary conditions for typical processes, along with important parameters, common simplifications and specialized methods employed to study these processes are outlined. The field of thermal materials processing is quite extensive and only a few important techniques employed for materials processing are considered in detail. Among the processes discussed here are polymer extrusion, optical fiber drawing, casting, continuous processing, and chemical vapor deposition for the fabrication of thin films. The effect of heat and mass transfer on the final product, the nature of the basic problems involved, solution strategies, and engineering issues involved in the area are brought out. The current status and future trends are discussed, along with critical research needs in the area. The coupling between the research on the basic aspects of materials processing and the engineering concerns involved with practical processes and systems is discussed in detail.


2003 ◽  
Vol 125 (6) ◽  
pp. 957-979 ◽  
Author(s):  
Yogesh Jaluria

This paper reviews the active and growing field of thermal processing of materials, with a particular emphasis on the linking of basic research with engineering aspects. In order to meet the challenges posed by new applications arising in electronics, telecommunications, aerospace, transportation, and other areas, extensive work has been done on the development of new materials and processing techniques in recent years. Among the materials that have seen intense interest and research activity over the last two decades are semiconductor and optical materials, composites, ceramics, biomaterials, advanced polymers, and specialized alloys. New processing techniques have been developed to improve product quality, reduce cost, and control material properties. However, it is necessary to couple research efforts directed at the fundamental mechanisms that govern materials processing with engineering issues that arise in the process, such as system design and optimization, process feasibility, and selection of operating conditions to achieve desired product characteristics. Many traditional and emerging materials processing applications involve thermal transport, which plays a critical role in the determination of the quality and characteristics of the final product and in the operation, control, and design of the system. This review is directed at the heat and mass transfer phenomena underlying a wide variety of materials processing operations, such as optical fiber manufacture, casting, thin film manufacture, and polymer processing, and at the engineering aspects that arise in actual practical systems. The review outlines the basic and applied considerations in thermal materials processing, available solution techniques, and the effect of the transport on the process, the product and the system. The complexities that are inherent in materials processing, such as large material property changes, complicated and multiple regions, combined heat and mass transfer mechanisms, and complex boundary conditions, are discussed. The governing equations for typical processes, along with important parameters, common simplifications and specialized methods employed to study these processes are outlined. The field of thermal materials processing is quite extensive and only a few important techniques employed for materials processing are considered in detail. The effect of heat and mass transfer on the final product, the nature of the basic problems involved, solution strategies, and engineering issues involved in the area are brought out. The current status and future trends are discussed, along with critical research needs in the area. The coupling between the research on the basic aspects of materials processing and the engineering concerns in practical processes and systems is discussed in detail.


2010 ◽  
Vol 7 ◽  
pp. 182-190
Author(s):  
I.Sh. Nasibullayev ◽  
E.Sh. Nasibullaeva

In this paper the investigation of the axisymmetric flow of a liquid with a boundary perpendicular to the flow is considered. Analytical equations are derived for the radial and axial velocity and pressure components of fluid flow in a pipe of finite length with a movable right boundary, and boundary conditions on the moving boundary are also defined. A numerical solution of the problem on a finite-difference grid by the iterative Newton-Raphson method for various velocities of the boundary motion is obtained.


2018 ◽  
Vol 13 (3) ◽  
pp. 1-10 ◽  
Author(s):  
I.Sh. Nasibullayev ◽  
E.Sh Nasibullaeva ◽  
O.V. Darintsev

The flow of a liquid through a tube deformed by a piezoelectric cell under a harmonic law is studied in this paper. Linear deformations are compared for the Dirichlet and Neumann boundary conditions on the contact surface of the tube and piezoelectric element. The flow of fluid through a deformed channel for two flow regimes is investigated: in a tube with one closed end due to deformation of the tube; for a tube with two open ends due to deformation of the tube and the differential pressure applied to the channel. The flow rate of the liquid is calculated as a function of the frequency of the deformations, the pressure drop and the physical parameters of the liquid.


Author(s):  
Chunyan Ji ◽  
Thosini Bamunu Mudiyanselage ◽  
Yutong Gao ◽  
Yi Pan

AbstractThis paper reviews recent research works in infant cry signal analysis and classification tasks. A broad range of literatures are reviewed mainly from the aspects of data acquisition, cross domain signal processing techniques, and machine learning classification methods. We introduce pre-processing approaches and describe a diversity of features such as MFCC, spectrogram, and fundamental frequency, etc. Both acoustic features and prosodic features extracted from different domains can discriminate frame-based signals from one another and can be used to train machine learning classifiers. Together with traditional machine learning classifiers such as KNN, SVM, and GMM, newly developed neural network architectures such as CNN and RNN are applied in infant cry research. We present some significant experimental results on pathological cry identification, cry reason classification, and cry sound detection with some typical databases. This survey systematically studies the previous research in all relevant areas of infant cry and provides an insight on the current cutting-edge works in infant cry signal analysis and classification. We also propose future research directions in data processing, feature extraction, and neural network classification fields to better understand, interpret, and process infant cry signals.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 664
Author(s):  
Nikos Kanakaris ◽  
Nikolaos Giarelis ◽  
Ilias Siachos ◽  
Nikos Karacapilidis

We consider the prediction of future research collaborations as a link prediction problem applied on a scientific knowledge graph. To the best of our knowledge, this is the first work on the prediction of future research collaborations that combines structural and textual information of a scientific knowledge graph through a purposeful integration of graph algorithms and natural language processing techniques. Our work: (i) investigates whether the integration of unstructured textual data into a single knowledge graph affects the performance of a link prediction model, (ii) studies the effect of previously proposed graph kernels based approaches on the performance of an ML model, as far as the link prediction problem is concerned, and (iii) proposes a three-phase pipeline that enables the exploitation of structural and textual information, as well as of pre-trained word embeddings. We benchmark the proposed approach against classical link prediction algorithms using accuracy, recall, and precision as our performance metrics. Finally, we empirically test our approach through various feature combinations with respect to the link prediction problem. Our experimentations with the new COVID-19 Open Research Dataset demonstrate a significant improvement of the abovementioned performance metrics in the prediction of future research collaborations.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1305
Author(s):  
Ahmad Fakhari ◽  
Željko Tukovic ◽  
Olga Sousa Carneiro ◽  
Célio Fernandes

The extrudate swell, i.e., the geometrical modifications that take place when the flowing material leaves the confined flow inside a channel and moves freely without the restrictions that are promoted by the walls, is a relevant phenomenon in several polymer processing techniques. For instance, in profile extrusion, the extrudate cross-section is subjected to a number of distortions that are motivated by the swell, which are very difficult to anticipate, especially for complex geometries. As happens in many industrial processes, numerical modelling might provide useful information to support design tasks, i.e., to allow for identifying the best strategy to compensate the changes promoted by the extrudate swell. This study reports the development of an improved interface tracking algorithm that employs the least-squares volume-to-point interpolation method for the grid movement. The formulation is enriched further with the consistent second-order time-accurate non-iterative Pressure-Implicit with Splitting of Operators (PISO) algorithm, which allows for efficiently simulating free-surface flows. The accuracy and robustness of the proposed solver is illustrated through the simulation of the steady planar and asymmetric extrudate swell flows of Newtonian fluids. The role of inertia on the extrudate swell is studied, and the results that are obtained with the newly improved solver show good agreement with reference data that are found in the scientific literature.


2020 ◽  
Vol 34 (4) ◽  
pp. 499-511 ◽  
Author(s):  
Jessica L. Pallant ◽  
Sean Sands ◽  
Ingo Oswald Karpen

Purpose Increasingly, customers are demanding products that fit their individual needs. Many firms respond by cultivating product individualization via mass customization, often integrating this capability via interactive platforms that connect them with customers. Despite such customization, research to date has lacked cohesion, often taking the organizational, rather than customer, view. The purpose of this paper is to provide inconclusive theorizing in regard to customization from the consumers’ perspective. Design/methodology/approach The review and synthesis of the literature revealed that co-configuration is an underexplored domain of mass customization. Consequently, an initial conceptualization of co-configuration is developed and compared with current customization strategies. Specifically, the definition and boundary conditions of co-configuration are compared with three domains of mass customization, namely, co-production, co-construction and co-design. This led to the development of research priority areas to establish an agenda for future research on mass customization and its role in customer’ firm relationships. Findings This paper provides the delineation of four distinct consumer customization strategies, conceptualized in a matrix, and proposes separate customer journey visualizations. In advancing the theoretical understanding by means of a unifying typology, this paper identifies three existing Cs of mass customization (co-production, co-construction and co-design) and focuses specifically on a fourth (co-configuration), identified as an understudied mass customization strategy. Originality/value This paper extends the previous conceptualizations of mass customization comprising co-production, co-design and co-construction. The proposed typology establishes a foundation for four research priority areas that can improve both academic rigor and practical application.


Sign in / Sign up

Export Citation Format

Share Document