Measurement of the Instantaneous Velocity Gradients in Plane and Axisymmetric Turbulent Wake Flows

2001 ◽  
Vol 124 (1) ◽  
pp. 143-153 ◽  
Author(s):  
T. Schenck ◽  
J. Jovanovic´

All first-order spatial derivatives of the turbulent velocity fluctuations were measured using a pair of X hot-wire probes. Measurements were performed in the self-preserving region of a turbulent plane wake downstream of a cylinder and in an axisymmetric wake behind the sphere. Good spatial resolution of the measurements was ensured by choosing small values for the cylinder/sphere diameter and a low flow speed. Errors due to the finite hot-wire length and the wire and probe separation were analyzed using Wyngaard’s correction method. The derived corrections were verified experimentally. The measuring technique and the experimental results were systematically checked and compared with the results available in the literature. The assumptions of local isotropy and local axisymmetry were examined. Both investigated flows deviate only moderately from local isotropy and local axisymmetry. Support for the measured results is provided by plotting the data on an anisotropy invariant map. The budgets of the turbulent kinetic energy were computed from the measured data. In contrast to the results obtained in the plane wake, where the pressure transport is nearly negligible, in the axisymmetric wake it was found to play an important role and closely follows the estimate made by Lumley, uip¯/ρ≈−0.2q2ui¯.

Author(s):  
Bárbara Angélio Quirino ◽  
Franco Teixeira de Mello ◽  
Sabrina Deosti ◽  
Claudia Costa Bonecker ◽  
Ana Lúcia Paz Cardozo ◽  
...  

Abstract Habitat complexity is recognized to mediate predator–prey relationships by offering refuge or not. We investigated the availability of planktonic microcrustaceans and the diet of a planktivorous fish (Hyphessobrycon eques) at different levels (low, intermediate and high) of aquatic macrophyte biomass. Sampling was carried out in a river with low flow speed, located in a Neotropical floodplain. We collected fish and microcrustaceans in macrophyte stands with variations in biomass. There were no differences in microcrustacean density in the water among the levels of macrophyte biomass, but microcrustacean richness and diet composition of H. eques differed. Microcrustacean richness and trophic niche breadth of the planktivorous fish were higher in high biomass stands. There was high consumption of a small cladoceran species in low macrophyte biomass, which was replaced by larger species, such as copepods, in intermediate and high biomass. Thus, the selection of some species was different among the biomass levels. These results suggest that plant biomass plays an important role in the interaction between fish and microcrustaceans, and prey characteristics such as size, escape ability and energy value make them more or less subject to predation by fish according to habitat structuring.


2007 ◽  
Vol 64 (6) ◽  
pp. 1794-1810 ◽  
Author(s):  
Ali R. Mohebalhojeh ◽  
Michael E. McIntyre

The effects of enforcing local mass conservation on the accuracy of non-Hamiltonian potential-vorticity- based balanced models (PBMs) are examined numerically for a set of chaotic shallow-water f-plane vortical flows in a doubly periodic square domain. The flows are spawned by an unstable jet and all have domain-maximum Froude and Rossby numbers Fr ∼0.5 and Ro ∼1, far from the usual asymptotic limits Ro → 0, Fr → 0, with Fr defined in the standard way as flow speed over gravity wave speed. The PBMs considered are the plain and hyperbalance PBMs defined in Part I. More precisely, they are the plain-δδ, plain-γγ, and plain-δγ PBMs and the corresponding hyperbalance PBMs, of various orders, where “order” is related to the number of time derivatives of the divergence equation used in defining balance and potential-vorticity inversion. For brevity the corresponding hyperbalance PBMs are called the hyper-δδ, hyper-γγ, and hyper-δγ PBMs, respectively. As proved in Part I, except for the leading-order plain-γγ each plain PBM violates local mass conservation. Each hyperbalance PBM results from enforcing local mass conservation on the corresponding plain PBM. The process of thus deriving a hyperbalance PBM from a plain PBM is referred to for brevity as plain-to-hyper conversion. The question is whether such conversion degrades the accuracy, as conjectured by McIntyre and Norton. Cumulative accuracy is tested by running each PBM alongside a suitably initialized primitive equation (PE) model for up to 30 days, corresponding to many vortex rotations. The accuracy is sensitively measured by the smallness of the ratio ϵ = ||QPBM − QPE||2/||QPE||2, where QPBM and QPE denote the potential vorticity fields of the PBM and the PEs, respectively, and || ||2 is the L2 norm. At 30 days the most accurate PBMs have ϵ ≈ 10−2 with PV fields hardly distinguishable visually from those of the PEs, even down to tiny details. Most accurate is defined by minimizing ϵ over all orders and truncation types δδ, γγ, and δγ. Contrary to McIntyre and Norton’s conjecture, the minimal ϵ values did not differ systematically or significantly between plain and hyperbalance PBMs. The smallness of ϵ suggests that the slow manifolds defined by the balance relations of the most accurate PBMs, both plain and hyperbalance, are astonishingly close to being invariant manifolds of the PEs, at least throughout those parts of phase space for which Ro ≲ 1 and Fr ≲ 0.5. As another way of quantifying the departures from such invariance, that is, of quantifying the fuzziness of the PEs’ slow quasimanifold, initialization experiments starting at days 1, 2, . . . 10 were carried out in which attention was focused on the amplitudes of inertia–gravity waves representing the imbalance arising in 1-day PE runs. With balance defined by the most accurate PBMs, and imbalance by departures therefrom, the results of the initialization experiments suggest a negative correlation between early imbalance and late cumulative error ϵ. In such near-optimal conditions the imbalance seems to be acting like weak background noise producing an effect analogous to so-called stochastic resonance, in that a slight increase in noise level brings PE behavior closer to the balanced behavior defined by the most accurate PBMs when measured cumulatively over 30 days.


Optik ◽  
2020 ◽  
pp. 166118
Author(s):  
Zhen Li ◽  
Jiqiang Wang ◽  
Xiaoxing Zhong ◽  
Tongyu Liu ◽  
Yanong Ning ◽  
...  

2019 ◽  
Vol 21 (5) ◽  
pp. 875-892
Author(s):  
Kaushik Bora ◽  
Hriday Mani Kalita

Abstract This paper presents a novel approach for determining the best combination of groynes in terms of their number, lengths and positions for controlling bank erosion. The vulnerable bank is considered to be protected if a very small value of water flow speed is achieved on the near bank area. A linked simulation–optimization model is developed in this regard which minimizes the total construction cost of the groyne project. At the same time, a constraint in terms of low flow speed in a predefined zone is incorporated, which helps in bank erosion prevention. In the simulation model, the depth-averaged shallow water equations are solved using a finite difference scheme. The optimization problem is formulated in three different approaches to tackle different types of in situ field problems. Genetic algorithm (GA) is used to solve the optimization problem. The proposed optimization model is used in two hypothetical test cases including one straight channel and one meandering channel. The results obtained with all the three formulations are found to be logical and establish the potential of the present model for application in real cases.


2000 ◽  
Vol 123 (2) ◽  
pp. 265-270 ◽  
Author(s):  
Sandra Velarde-Sua´rez ◽  
Rafael Ballesteros-Tajadura ◽  
Carlos Santolaria-Morros ◽  
Jose´ Gonza´lez-Pe´rez

The results of an experimental investigation of the flow at two exit radial locations of a forward-curved blades centrifugal fan are presented. Hot wire techniques were used to obtain steady velocity components and velocity unsteadiness levels (rms value of the components of velocity fluctuation) for different operating conditions. Globally speaking, the data reveal a strong flow asymmetry, with considerable changes in both magnitude and direction along the different circumferential positions. Particularly, big differences appear between the circumferential positions closer to the volute tongue and the other ones. The periodic character of the velocity signals due to the passing of the blades, clearly observed around the impeller, is missed in the vicinity of the volute tongue, where the main contribution to the velocity fluctuations appears to be random. Based on the measured velocity signals, velocity unsteadiness of the flow is determined analyzing the main contributions as a function of the flow rate and the measurement position. High levels of velocity unsteadiness were observed near the volute tongue, mainly at low flow rates.


2020 ◽  
Author(s):  
Xiaoyu Zhou ◽  
Vesselina Roussinova ◽  
Vesselin Stoilov

Abstract This paper investigates the performance of vortex-induced vibration (VIV) energy harvester in low-speed water flow. The proposed VIV harvester is extracting hydrokinetic energy from the flowing current and transferring it into mechanical vibrations. The vibrations are further converted into electrical energy using the piezoelectric transducer to supply the modern demand for energy-consumption. To meet the demand, the single harvester is analyzed to determine the suitable geometry for the bluff body that is sensitive to the low-speed flow. Furthermore, the converter must be able to harvest vibrations of varying amplitudes and frequencies. To maximize the power output, different array configurations of multiple bluff bodies are examined. A single positively buoyant elastically mounted cylinder is tested experimentally and at a low flow speed of 0.3 m/s, it can harvest vibrations with an average frequency of 1.8 Hz and peak to peak amplitude of 1.5d, where d is the diameter of the bluff body. It was found that for an array consisting of ten bluff bodies, the average frequency and peak to peak amplitude increases to 2.09Hz and 1.54d, respectively.


2020 ◽  
Vol 20 (03) ◽  
pp. 2050036
Author(s):  
Xiping Sun ◽  
Hao Yan ◽  
Huliang Dai

This paper deals with the stability and dynamic evolution of a sliding pipe conveying fluid in the three-dimensional sense. The pipe is assumed to slide out from a fixed channel so that its free end is moving at the same time, a problem often associated with instabilities in applications of aerial refueling operation. To tackle this problem, the nonlinear governing equations of motion are derived by using the Hamilton’s principle and then reduced to a set of ordinary differential equations by the Galerkin’s method. A parametric study is performed to explore the transient vibration responses of the pipe for different values of flow velocity and sliding rate. Various dynamic behaviors are detected for the pipe in sliding and conveying fluid. The results show that 3-D oscillations of the pipe occur when the flow velocity exceeds a certain value, which can be affected by the sliding rate. For various flow velocities, the evolution of the dynamic characteristics of the sliding pipe can be classified into three typical types of motion. When at low flow velocity, the pipe is mainly subjected to a single type of 3-D motion. When the flow speed increases to high values, multi-type of 3-D motion consisting of three typical types occurs on the pipe. In addition, the pipe can display planar motions, transferring from one plane to the other. The result presented herein is helpful to understand the stabilities and dynamic behaviors of sliding-pipe systems used in aerial refueling applications.


1996 ◽  
Vol 323 ◽  
pp. 173-200 ◽  
Author(s):  
R. A. Antonia ◽  
Y. Zhu ◽  
H. S. Shafi

The accurate measurement of vorticity has proven difficult because of the difficulty of estimating spatial derivatives of velocity fluctuations reliably. A method is proposed for correcting the lateral vorticity spectrum measured using a four-wire probe. The attenuation of the measured spectrum increases as the wavenumber increases but does not vanish when the wavenumber is zero. Although the correction procedure assumes local isotropy, the major contributor to the high-wavenumber part of the vorticity spectrum is the streamwise derivative of the lateral velocity fluctuation, and the correction of this latter quantity does not depend on local isotropy. Satisfactory support for local isotropy is provided by the high-wavenumber parts of the velocity, velocity derivative and vorticity spectra measured on the centreline of a turbulent wake. Second- and fourth-order moments of vorticity show departures from local isotropy but the degree of departure seems unaffected by the turbulence Reynolds number Rλ. The vorticity probability density function is approximately exponential and has tails which stretch out to larger amplitudes as Rλ increases. The vorticity flatness factor, which is appreciably larger than the flatness factor of the streamwise velocity derivative, also increases with Rλ. When Rλ is sufficiently large for velocity structure functions to indicate a r2/3 inertial range, two-point longitudinal correlations of lateral vorticity fluctuations give encouraging support for the theoretical r−4/3 behaviour.


1988 ◽  
Vol 110 (4) ◽  
pp. 361-366 ◽  
Author(s):  
T. C. Wagner ◽  
J. C. Kent

A new measurement method is utilized to determine velocity distributions on the intake-valve/cylinder boundary for different induction system designs. The velocity information is being used to calculate the angular momentum flux and to define local discharge coefficients around the valve periphery. The contribution of local flow direction (effective area) and local flow speed (velocity losses) to the global discharge coefficients is examined. The dependence of the discharge coefficient on the flow direction and mean velocity magnitude provides useful diagnostic data to relate intake port geometry and flow performance. The measurement technique is also described in detail. The directional response of a single hot-wire anemometer is utilized along with sequential sampling of the signal as the probe shaft is rotated through 360 deg. Within the range of velocity and flow direction required, the velocity magnitude and direction can be determined to within 2 percent and 2 deg, respectively.


Sign in / Sign up

Export Citation Format

Share Document