Optimization of Turbine Disk Profiles by Metamorphic Development

2002 ◽  
Vol 124 (2) ◽  
pp. 192-200 ◽  
Author(s):  
Jing-Sheng Liu ◽  
Geoffrey T. Parks ◽  
P. John Clarkson

A novel topology/shape optimization method, Metamorphic Development, is applied to an axisymmetric thermo-elasticity design problem. Based on solid modeling and finite element analysis, optimal profiles of minimum mass turbine disks are sought by growing and degenerating simple initial structures subject to both response and geometric constraints. Radial stress, axial stress, hoop stress and von Mises stress are analyzed throughout the optimization and a constraint is imposed on von Mises stress everywhere in the disk. The optimal structures are developed metamorphically in specified infinite design domains using both quadrilateral and triangular axisymmetric finite elements. Comparisons are made of the results obtained for different optimization scenarios: (a) with and without thermal loading; (b) with and without centrifugal body forces; (c) with and without a fit pressure on the inner surface of the hub; and (d) operating at different rotational speeds.

Author(s):  
Kosuke Mori ◽  
Toshiyuki Meshii

In this paper, a failure criterion applicable to large-strain finite element analysis (FEA) results was studied to predict the limit bending load Mc of the groove shaped wall-thinned pipes, under combined internal pressure and bending load, that experienced cracking. In our previous studies, Meshii and Ito [1] considered cracking of pipes with groove shaped flaw (small axial length δz in Fig. 1) was due to the plastic instability at the wall-thinned section and proposed the Domain Collapse Criterion (DCC). The DCC predicted Mc of cracking for small δz by comparing the von Mises stress σMises with the true tensile strength σB. However, it was indicated that the predictability of Mc was not necessarily sufficient. Thus, in this work, attempts were made to improve the accuracy of Mc prediction with a perspective that multi-axial stress state might affect this plastic instability. As a result of examination of the various failure criteria based on multi-axial stress, it was confirmed that the limit bending load of the groove flawed pipe that experienced cracking could be predicted within 5 % accuracy by applying Hill’s plastic instability onset criterion [2] to the outer surface of the crack penetration section. The accuracy of the predicted limit bending load was improved from DCC’s error of 15% to 5%.


2014 ◽  
Vol 592-594 ◽  
pp. 1104-1108 ◽  
Author(s):  
Swapnil Vitthal Kumbhar ◽  
Vilas Kulkarni ◽  
R.M. Tayade

Cyclic thermal loading causes cyclic thermal stress and thermal fatigue in the component. The goal of this paper is to characterize the thermal fatigue behavior of after-treatment (AT) device, i.e. Exhaust Gas Processor (EGP) and prediction of crack initiation cycles. The paper contains transient thermal analysis to map temperature on EGP model. By taking temperature distribution as input, Elasto-plastic structural analysis is done. Based on stress-strain data and fatigue material property, crack initiation cycles are estimated. For low cycle fatigue analysis, strain based approach, i.e. Brown-Miller Criteria with Morrow mean stress correction factor [1] is used. The von-Mises stress and crack initiation cycles are investigated and S-N curve and Ɛ-N curve are compared with standard graphs.


Author(s):  
Paul Miles ◽  
Mark Archibald

This study experimentally investigated pedal cycle frame loads and verified analytical load cases applied to vehicle design. The experimental results were compared with a Finite Element Analysis (FEA) model. The weight of the rider on the seat, road induced loads and vibrations, and the force the rider exerts on the pedals affect the stress state of the frame. Strain gauges were applied to two different frame models. Four different locations were tested on a monotube long-wheel base (LWB) recumbent frame and six locations on a standard upright Schwinn. The stress state was calculated from the raw strain data. Depending on the gauge being used, the results either indicated the von Mises stress or simply the axial stress. The different loading conditions tested were as follows: static, steady pedaling on smooth, mid-grade, and rough pavement, and hard acceleration on level ground and uphill. The static and hard acceleration cases were directly compared to the FEA model. The experimental results were comparable to the FEA analysis. The complexity of the load case, coupled with unknown actual loads, explains the larger differences between FEA and experimental results. Based on experimental results, the FEA model was refined, improving the agreement between model and experiment. The stress states of a bicycle frame were successfully found experimentally, being confirmed by multiple runs under each loading condition. Based on the agreement between the two methods, the use of FEA load cases to predict stresses in pedal cycle frames was verified.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Lasinta Ari Nendra Wibawa

The rocket motor is an important part of rockets. The rocket motor works using the pressure vessel principle because it works in an environment with high pressure and temperature. This paper investigates the von Mises stress that occurs in thin-walled cylinders and safety factors for rocket motor cases due to the influence of the wall thickness and internal pressure. Dimensions of the cylinder length are 500 mm, outer diameter is 200 mm, and cap thickness is 30 mm. The wall thickness is varied 6, 7, 8, and 9 mm, while the internal pressure is varied 8, 9, and 10 MPa. Stress analysis is performed using the finite element method with Ansys Workbench 2019 R3 software. The simulation results show that the maximum von Mises stress decreases with increasing wall thickness. The maximum von Mises stress increases with increasing internal pressure. The material has a safety factor higher than 1.25 for all variations in wall thickness and internal pressure. It means that the material can withstand static loads. The verification process is done by comparing the results of finite element analysis with analytical calculations for maximum hoop stress and maximum axial stress with a fixed boundary condition. The results of maximum hoop stress and maximum axial stress using finite element analysis and analytical calculations are not significantly different. The percentage of errors between analytical calculations and finite element analysis is less than 6 percent.


2016 ◽  
Vol 719 ◽  
pp. 46-54
Author(s):  
Madhu Bharadwaj ◽  
Prajwal Rao ◽  
Sowmianarayanan Srinivasan

Many mechanical or structural components are subjected to multi-axial, irregular cyclic loading during service. The direction and amplitude of principal stress and strain vary over a period of time results in non-proportional cyclic loading on the component. At geometrical discontinuities, even a monotonic load will result in multi-axial state of stress. In general, the life of the components subjected to multi-axial stress loadings, are evaluated using classical yield theories. The Tresca and von Mises criterions along with Basquin-Coffin and Manson life curve are widely used in commercially available Finite Element Analysis (FEA) tools. These classical methods are conservative and may not yield good experimental correlation at all the loading conditions and this augments the need for robust life estimation methodology.There are many commercially available FEA tools to estimate the multi-axial fatigue life viz. nCODE® which uses Wang-Brown method [1]. However, it has been found that for shear dominated fatigue material Fatemi-Socie criteria is more suitable. So an attempt is made to develop a an algorithm to implement Fatemi-Socie criteria in a commercially available generic FEA software in a cost effective way. This paper discusses how to estimate the life of a sample specimen subjected to multi-axial and non-proportional loading conditions. The classical yield criteria based on von-Mises stress with Basquin-Coffin and Manson equation and critical plane method viz, Fatemi-Socie criteria are implemented in to commercial FEA tool, ANSYS. This paper also attempt to see how these theories compare with experimental data. Results of this study would help in leveraging the established process of implementing custom based life estimation method in ANSYS for the estimation of the life of the mechanical components.


Author(s):  
Nurullah Türker ◽  
Hümeyra Tercanlı Alkış ◽  
Steven J Sadowsky ◽  
Ulviye Şebnem Büyükkaplan

An ideal occlusal scheme plays an important role in a good prognosis of All-on-Four applications, as it does for other implant therapies, due to the potential impact of occlusal loads on implant prosthetic components. The aim of the present three-dimensional (3D) finite element analysis (FEA) study was to investigate the stresses on abutments, screws and prostheses that are generated by occlusal loads via different occlusal schemes in the All-on-Four concept. Three-dimensional models of the maxilla, mandible, implants, implant substructures and prostheses were designed according to the All-on-Four concept. Forces were applied from the occlusal contact points formed in maximum intercuspation and eccentric movements in canine guidance occlusion (CGO), group function occlusion (GFO) and lingualized occlusion (LO). The von Mises stress values for abutment and screws and deformation values for prostheses were obtained and results were evaluated comparatively. It was observed that the stresses on screws and abutments were more evenly distributed in GFO. Maximum deformation values for prosthesis were observed in the CFO model for lateral movement both in the maxilla and mandible. Within the limits of the present study, GFO may be suggested to reduce stresses on screws, abutments and prostheses in the All-on-Four concept.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 301
Author(s):  
Jiaqi Chen ◽  
Hao Wang ◽  
Milad Salemi ◽  
Perumalsamy N. Balaguru

Carbon fiber reinforced polymer (CFRP) matrix composite overwrap repair systems have been introduced and accepted as an alternative repair system for steel pipeline. This paper aimed to evaluate the mechanical behavior of damaged steel pipeline with CFRP repair using finite element (FE) analysis. Two different repair strategies, namely wrap repair and patch repair, were considered. The mechanical responses of pipeline with the composite repair system under the maximum allowable operating pressure (MAOP) was analyzed using the validated FE models. The design parameters of the CFRP repair system were analyzed, including patch/wrap size and thickness, defect size, interface bonding, and the material properties of the infill material. The results show that both the stress in the pipe wall and CFRP could be reduced by using a thicker CFRP. With the increase in patch size in the hoop direction, the maximum von Mises stress in the pipe wall generally decreased as the maximum hoop stress in the CFRP increased. The reinforcement of the CFRP repair system could be enhanced by using infill material with a higher elastic modulus. The CFRP patch tended to cause higher interface shear stress than CFRP wrap, but the shear stress could be reduced by using a thicker CFRP. Compared with the fully bonded condition, the frictional interface causes a decrease in hoop stress in the CFRP but an increase in von Mises stress in the steel. The study results indicate the feasibility of composite repair for damaged steel pipeline.


2021 ◽  
Vol 11 (6) ◽  
pp. 2547 ◽  
Author(s):  
Carlo Prati ◽  
João Paulo Mendes Tribst ◽  
Amanda Maria de Oliveira Dal Piva ◽  
Alexandre Luiz Souto Borges ◽  
Maurizio Ventre ◽  
...  

The aim of the present investigation was to calculate the stress distribution generated in the root dentine canal during mechanical rotation of five different NiTi endodontic instruments by means of a finite element analysis (FEA). Two conventional alloy NiTi instruments F360 25/04 and F6 Skytaper 25/06, in comparison to three heat treated alloys NiTI Hyflex CM 25/04, Protaper Next 25/06 and One Curve 25/06 were considered and analyzed. The instruments’ flexibility (reaction force) and geometrical features (cross section, conicity) were previously investigated. For each instrument, dentine root canals with two different elastic moduli(18 and 42 GPa) were simulated with defined apical ratios. Ten different CAD instrument models were created and their mechanical behaviors were analyzed by a 3D-FEA. Static structural analyses were performed with a non-failure condition, since a linear elastic behavior was assumed for all components. All the instruments generated a stress area concentration in correspondence to the root canal curvature at approx. 7 mm from the apex. The maximum values were found when instruments were analyzed in the highest elastic modulus dentine canal. Strain and von Mises stress patterns showed a higher concentration in the first part of curved radius of all the instruments. Conventional Ni-Ti endodontic instruments demonstrated higher stress magnitudes, regardless of the conicity of 4% and 6%, and they showed the highest von Mises stress values in sound, as well as in mineralized dentine canals. Heat-treated endodontic instruments with higher flexibility values showed a reduced stress concentration map. Hyflex CM 25/04 displayed the lowest von Mises stress values of, respectively, 35.73 and 44.30 GPa for sound and mineralized dentine. The mechanical behavior of all rotary endodontic instruments was influenced by the different elastic moduli and by the dentine canal rigidity.


Author(s):  
Osezua Obehi Ibhadode ◽  
Ishaya Musa Dagwa ◽  
Akii Okonigbon Akhaehomen Ibhadode

Calibration curves of a multi-component dynamometer is of essence in machining operations in a lathe machine as they serve to provide values of force and stress components for cutting tool development and optimization. In this study, finite element analysis has been used to obtain the deflection and stress response of a two component cutting tool lathe dynamometer, for turning operation, when the cutting tool is subjected to cutting and thrust forces from 98.1N to 686.7N (10 to 70kg-wts), at intervals of 98.1N(10kg-wt). By obtaining the governing equation, modeling the dynamometer assembly, defining boundary conditions, generating the assembly mesh, and simulating in Inventor Professional; horizontal and vertical components of deflection by the dynamometer were read off for three different loading scenarios. For these three loading scenarios, calibration plots by experiment compared with plots obtained from simulation by finite element analysis gave accuracies of 79%, 95%, 84% and 36%, 57%, 63% for vertical and horizontal deflections respectively. Also, plots of horizontal and vertical components of Von Mises stress against applied forces were obtained.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Charles Savoldelli ◽  
Elodie Ehrmann ◽  
Yannick Tillier

AbstractWith modern-day technical advances, high sagittal oblique osteotomy (HSOO) of the mandible was recently described as an alternative to bilateral sagittal split osteotomy for the correction of mandibular skeletal deformities. However, neither in vitro nor numerical biomechanical assessments have evaluated the performance of fixation methods in HSOO. The aim of this study was to compare the biomechanical characteristics and stress distribution in bone and osteosynthesis fixations when using different designs and placing configurations, in order to determine a favourable plating method. We established two finite element models of HSOO with advancement (T1) and set-back (T2) movements of the mandible. Six different configurations of fixation of the ramus, progressively loaded by a constant force, were assessed for each model. The von Mises stress distribution in fixations and in bone, and bony segment displacement, were analysed. The lowest mechanical stresses and minimal gradient of displacement between the proximal and distal bony segments were detected in the combined one-third anterior- and posterior-positioned double mini-plate T1 and T2 models. This suggests that the appropriate method to correct mandibular deformities in HSOO surgery is with use of double mini-plates positioned in the anterior one-third and posterior one-third between the bony segments of the ramus.


Sign in / Sign up

Export Citation Format

Share Document