Numerical Study of Nonreacting Gas Turbine Combustor Swirl Flow Using Reynolds Stress Model

2003 ◽  
Vol 125 (3) ◽  
pp. 804-811 ◽  
Author(s):  
S. L. Yang ◽  
Y. K. Siow ◽  
B. D. Peschke ◽  
R. R. Tacina

This paper presents recent research on the use of a Reynolds stress turbulence model (RSTM) for three-dimensional flowfield simulation inside gas turbine combustors. It intends to show the motivations for using the RSTM in engine flow simulation, to present a further validation of the RSTM implementation in the KIVA code using the available experimental data, and to provide comparisons between RSTM and k-ε turbulence model results for chemically nonreacting swirling flows. The results show that, for high-degree swirl flow, the RSTM can provide predictions in favorable agreement with the experimental data, and that the RSTM predicts recirculations and high velocity gradients better than does the k-ε turbulence model. The results also indicate that the choice of swirler has a significant influence on the structure of the combustor flowfield.

2013 ◽  
Vol 17 (5) ◽  
pp. 1504-1507 ◽  
Author(s):  
Zhi-Fei Li ◽  
Zheng Du ◽  
Kai Zhang ◽  
Dong-Sheng Li ◽  
Zhong-Di Su ◽  
...  

Three-dimensional computational model for a gas turbine flowmeter is proposed, and the finite volume based SIMPLEC method and k-? turbulence model are used to obtain the detailed information of flow field in turbine flowmeter, such as velocity and pressure distribution. Comparison between numerical results and experimental data reveals a good agreement. A rectifier with little pressure loss is optimally designed and validated numerically and experimentally.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Ali Cemal Benim ◽  
Sohail Iqbal ◽  
Franz Joos ◽  
Alexander Wiedermann

Turbulent reacting flows in a generic swirl gas turbine combustor are investigated numerically. Turbulence is modelled by a URANS formulation in combination with the SST turbulence model, as the basic modelling approach. For comparison, URANS is applied also in combination with the RSM turbulence model to one of the investigated cases. For this case, LES is also used for turbulence modelling. For modelling turbulence-chemistry interaction, a laminar flamelet model is used, which is based on the mixture fraction and the reaction progress variable. This model is implemented in the open source CFD code OpenFOAM, which has been used as the basis for the present investigation. For validation purposes, predictions are compared with the measurements for a natural gas flame with external flue gas recirculation. A good agreement with the experimental data is observed. Subsequently, the numerical study is extended to syngas, for comparing its combustion behavior with that of natural gas. Here, the analysis is carried out for cases without external flue gas recirculation. The computational model is observed to provide a fair prediction of the experimental data and predict the increased flashback propensity of syngas.


2018 ◽  
Vol 168 ◽  
pp. 02012
Author(s):  
Radomír Chýlek ◽  
Ladislav Šnajdárek ◽  
Jiří Pospíšil

The Ranque–Hilsch vortex tube represents a device for both cooling and heating applications. It uses compressed gas as drive medium. The temperature separation is affected by fluid flow behaviour inside the tube. It has not been sufficiently examined in detail yet and has the potential for further investigation. The aim of this paper is to compare results of numerical simulations of the vortex tube with obtained experimental data. The numerical study was using computational fluid dynamics (CFD), namely computational code STAR-CCM+. For the numerical study, a three-dimensional geometry model, and various turbulence physics models were used. For the validation of carried out calculations, an experimental device of the vortex tube of identical geometrical and operating conditions was created and tested. The numerical simulation results have been obtained for five different turbulence models, namely Standard k-ε, Realizable k-ε, Standard k-ω, SST k-ω and Reynolds stress model (RSM), were compared with experimental results. The most important evaluation factor was the temperature field in the vortex tube. All named models of turbulence were able to predict the general flow behaviour in the vortex tube with satisfactory precision. Standard k-ε turbulence model predicted temperature distribution in the best accordance with the obtained experimental data.


2003 ◽  
Vol 125 (4) ◽  
pp. 1059-1065 ◽  
Author(s):  
S. L. Yang ◽  
Y. K. Siow ◽  
C. Y. Teo ◽  
R. R. Tacina ◽  
A. C. Iannetti ◽  
...  

The flowfield in a lean-direct injection (LDI) combustor with discrete-jet swirlers is described and analyzed using a computational fluid dynamics (CFD) code with a Reynolds stress turbulence model (RSTM). The results from the RSTM are compared to time-averaged laser-Doppler velocimetry (LDV) data, as well as results from the National Combustion Code (NCC) that has a cubic nonlinear κ-ε turbulence model, and from the KIVA code using the standard κ-ε model. The comparisons of results indicate that the RSTM accurately describes the flow details and resolves recirculation zones and high velocity gradients while the κ-ε models are unable to capture most flow structures. This confirms that, within the Reynolds averaging approach, the higher-order RSTM is preferred for simulating complex flowfields where separations, strong anisotropy, and high swirl are present.


2015 ◽  
Vol 23 (1) ◽  
pp. 1-7
Author(s):  
H’ssine Boudiaf ◽  
Ali Fourar ◽  
Fawaz Massouh

Abstract This study aims at describing a three-dimensional simulation of a turbulent flow with a high Reynolds number in a rectangular open channel with the presence of a disruptive element (obstacles) transversely. The numerical study is based on measuring the flow velocity in two directions, i.e., horizontal and vertical, in four planes located near the obstacle built across a simulated channel. For the modeling of the free surface, a Volume Of Fluid (VOF) multiphase flow model is used. In the present case, namely a study of turbulence, three numerical models are compared, a k-ε standard, a k-w standard and a Reynolds Stress Model (RSM). The verification of the simulation results has allowed us to show the advantages of the Reynolds stress model. This model is more representative of the phenomena of an intense vortex flow in the presence of obstacles, especially in drainage systems.


Author(s):  
H. X. Liang ◽  
Q. W. Wang ◽  
L. Q. Luo ◽  
Z. P. Feng

Three-dimensional numerical simulation was conducted to investigate the flow field and heat transfer performance of the Cross-Wavy Primary Surface (CWPS) recuperators for microturbines. Using high-effective compact recuperators to achieve high thermal efficiency is one of the key techniques in the development of microturbine in recent years. Recuperators need to have minimum volume and weight, high reliability and durability. Most important of all, they need to have high thermal-effectiveness and low pressure-losses so that the gas turbine system can achieve high thermal performances. These requirements have attracted some research efforts in designing and implementing low-cost and compact recuperators for gas turbine engines recently. One of the promising techniques to achieve this goal is the so-called primary surface channels with small hydraulic dimensions. In this paper, we conducted a three-dimensional numerical study of flow and heat transfer for the Cross-Wavy Primary Surface (CWPS) channels with two different geometries. In the CWPS configurations the secondary flow is created by means of curved and interrupted surfaces, which may disturb the thermal boundary layers and thus improve the thermal performances of the channels. To facilitate comparison, we chose the identical hydraulic diameters for the above four CWPS channels. Since our experiments on real recuperators showed that the Reynolds number ranges from 150 to 500 under the operating conditions, we implemented all the simulations under laminar flow situations. By analyzing the correlations of Nusselt numbers and friction factors vs. Reynolds numbers of the four CWPS channels, we found that the CWPS channels have superior and comprehensive thermal performance with high compactness, i.e., high heat transfer area to volume ratio, indicating excellent commercialized application in the compact recuperators.


Author(s):  
Mohammad R. Saadatmand

The aerodynamic design process leading to the production configuration of a 14 stage, 16:1 pressure ratio compressor for the Taurus 70 gas turbine is described. The performance of the compressor is measured and compared to the design intent. Overall compressor performance at the design condition was found to be close to design intent. Flow profiles measured by vane mounted instrumentation are presented and discussed. The flow through the first rotor blade has been modeled at different operating conditions using the Dawes (1987) three-dimensional viscous code and the results are compared to the experimental data. The CFD prediction agreed well with the experimental data across the blade span, including the pile up of the boundary layer on the corner of the hub and the suction surface. The rotor blade was also analyzed with different grid refinement and the results were compared with the test data.


2001 ◽  
Vol 124 (1) ◽  
pp. 86-99 ◽  
Author(s):  
G. A. Gerolymos ◽  
J. Neubauer ◽  
V. C. Sharma ◽  
I. Vallet

In this paper an assessment of the improvement in the prediction of complex turbomachinery flows using a new near-wall Reynolds-stress model is attempted. The turbulence closure used is a near-wall low-turbulence-Reynolds-number Reynolds-stress model, that is independent of the distance-from-the-wall and of the normal-to-the-wall direction. The model takes into account the Coriolis redistribution effect on the Reynolds-stresses. The five mean flow equations and the seven turbulence model equations are solved using an implicit coupled OΔx3 upwind-biased solver. Results are compared with experimental data for three turbomachinery configurations: the NTUA high subsonic annular cascade, the NASA_37 rotor, and the RWTH 1 1/2 stage turbine. A detailed analysis of the flowfield is given. It is seen that the new model that takes into account the Reynolds-stress anisotropy substantially improves the agreement with experimental data, particularily for flows with large separation, while being only 30 percent more expensive than the k−ε model (thanks to an efficient implicit implementation). It is believed that further work on advanced turbulence models will substantially enhance the predictive capability of complex turbulent flows in turbomachinery.


Author(s):  
B. G. Vinod Kumar ◽  
John W. Chew ◽  
Nicholas J. Hills

Design and optimization of an efficient internal air system of a gas turbine requires thorough understanding of the flow and heat transfer in rotating disc cavities. The present study is devoted to numerical modelling of flow and heat transfer in a cylindrical cavity with radial inflow and comparison with the available experimental data. The simulations are carried out with axi-symmetric and 3-D sector models for various inlet swirl and rotational Reynolds numbers upto 2.1×106. The pressure coefficients and Nusselt numbers are compared with the available experimental data and integral method solutions. Two popular eddy viscosity models, the Spalart-Allmaras and the k-ε, and a Reynolds stress model have been used. For cases with particularly strong vortex behaviour the eddy viscosity models show some shortcomings with the Spalart-Allmaras model giving slightly better results than the k-ε model. Use of the Reynolds stress model improved the agreement with measurements for such cases. The integral method results are also found to agree well with the measurements.


Sign in / Sign up

Export Citation Format

Share Document