scholarly journals Vortex Tube: A Comparison of Experimental and CFD Analysis Featuring Different RANS Models

2018 ◽  
Vol 168 ◽  
pp. 02012
Author(s):  
Radomír Chýlek ◽  
Ladislav Šnajdárek ◽  
Jiří Pospíšil

The Ranque–Hilsch vortex tube represents a device for both cooling and heating applications. It uses compressed gas as drive medium. The temperature separation is affected by fluid flow behaviour inside the tube. It has not been sufficiently examined in detail yet and has the potential for further investigation. The aim of this paper is to compare results of numerical simulations of the vortex tube with obtained experimental data. The numerical study was using computational fluid dynamics (CFD), namely computational code STAR-CCM+. For the numerical study, a three-dimensional geometry model, and various turbulence physics models were used. For the validation of carried out calculations, an experimental device of the vortex tube of identical geometrical and operating conditions was created and tested. The numerical simulation results have been obtained for five different turbulence models, namely Standard k-ε, Realizable k-ε, Standard k-ω, SST k-ω and Reynolds stress model (RSM), were compared with experimental results. The most important evaluation factor was the temperature field in the vortex tube. All named models of turbulence were able to predict the general flow behaviour in the vortex tube with satisfactory precision. Standard k-ε turbulence model predicted temperature distribution in the best accordance with the obtained experimental data.

2013 ◽  
Vol 40 (7) ◽  
pp. 603-612 ◽  
Author(s):  
Mehrdad Shademan ◽  
Ram Balachandar ◽  
Ronald M. Barron

Three-dimensional steady Reynolds Averaged Navier-Stokes simulations have been carried out to investigate the effect of the nozzle stand-off distance on the mean and turbulence characteristics of jets impinging vertically on flat surfaces. As part of the study, the performance of different turbulence models such as Realizable k–ε, k–ω SST, and Reynolds Stress Model (RSM) were evaluated. Based on comparisons with experimental data, RSM was chosen to further evaluate the characteristics of impinging jets. The Reynolds number based on the jet exit velocity and nozzle diameter is 100 000. Three different nozzle height-to-diameter ratios, representing different types of impinging jets, were simulated and compared with available experimental data. A strong dependency of the jet characteristics on the nozzle height-to-diameter ratio was observed. The simulations show that an increase in this ratio results in larger shear stress and more distributed pressure on the wall, more development of the flow in the axial direction and faster progress of the jet in the wall region. The current simulations present a robust step-by-step computational fluid dynamics approach to investigate the role of the nozzle height-to-diameter ratio on the impinging jet flow parameters.


2005 ◽  
Author(s):  
E. Karunakaran ◽  
V. Ganesan

This paper is concerned with the study of performance of popular turbulence models used in the CFD analysis. Turbulence models considered for evaluation include the eddy viscosity models and the Reynolds stress model. The recent k-ε-v2-f model recommended for a flow with separation is also studied. Evaluation of the turbulence models in the present study focuses on a three-dimensional flow field development with adverse pressure gradient and flows that simulate wall-bounded turbulence. Numerical calculations are performed using SIMPLE based algorithm. Nowadays, decelerating flow in a diffuser is assessed by numerical simulations and the validation is done with experimental results. A comparison of the numerical results and the experimental data are presented. The main objective of the comparison is to obtain information on how well the numerical simulations representing the flow field with the standard turbulence models, are able to reproduce the experimental data.


2003 ◽  
Vol 125 (3) ◽  
pp. 804-811 ◽  
Author(s):  
S. L. Yang ◽  
Y. K. Siow ◽  
B. D. Peschke ◽  
R. R. Tacina

This paper presents recent research on the use of a Reynolds stress turbulence model (RSTM) for three-dimensional flowfield simulation inside gas turbine combustors. It intends to show the motivations for using the RSTM in engine flow simulation, to present a further validation of the RSTM implementation in the KIVA code using the available experimental data, and to provide comparisons between RSTM and k-ε turbulence model results for chemically nonreacting swirling flows. The results show that, for high-degree swirl flow, the RSTM can provide predictions in favorable agreement with the experimental data, and that the RSTM predicts recirculations and high velocity gradients better than does the k-ε turbulence model. The results also indicate that the choice of swirler has a significant influence on the structure of the combustor flowfield.


Author(s):  
Guilherme Vaz ◽  
Christophe Mabilat ◽  
Remmelt van der Wal ◽  
Paul Gallagher

The objective of this paper is to investigate several numerical and modelling features that the CFD community is currently using to compute the flow around a fixed smooth circular cylinder. Two high Reynolds numbers, 9 × 104 and 5 × 105, are chosen which are in the so called drag-crisis region. Using a viscous flow solver, these features are assessed in terms of quality by comparing the numerical results with experimental data. The study involves grid sensitivity, time step sensitivity, the use of different turbulence models, three-dimensional effects, and a RANS/DES (Reynolds Averaged Navier Stokes, Detached Eddy Simulation) comparison. The resulting drag forces and Strouhal numbers are compared with experimental data of different sources. Major flow features such as velocity and vorticity fields are presented. One of the main conclusions of the present study is that all models predict forces which are far from the experimental values, particularly for the higher Reynolds numbers in the drag-crisis region. Three-dimensional and unsteadiness effects are present, but are only fully captured by sophisticated turbulence models or by DES. DES seems to be the key to better solve the flow problem and obtain better agreement with experimental data. However, its considerable computational demands still do not allow to use it for engineering design purposes.


2011 ◽  
Vol 1 (4) ◽  
Author(s):  
S. Rahman ◽  
A. Mujumdar

AbstractA three-dimensional (3D) computational fluid dynamic simulation of a vortex tube is carried out to examine its flow and thermal characteristics. The aim of this work is to model the performance of the vortex tube and to capture the highly swirling compressible flow behavior inside the tube for an understanding of the well known temperature separation process. Simulations were carried out using the standard k-ɛ, k-omega, RNG k-ɛ and swirl RNG k-ɛk-ɛ turbulence models. An experimental setup was built and tested to validate the simulation results. The RNG k-ɛ turbulence model yielded better agreement between the numerical predictions and experimental data. This model captured well the essential features of the flow including formation of the outer vortex and the inner reverse vortex flow. Flow and geometric parameters that affect the flow behavior and energy separation are studied numerically. Effects of the inlet pressure, with and without an insert in the tube, are examined by numerical experiments.


Author(s):  
H. X. Liang ◽  
Q. W. Wang ◽  
L. Q. Luo ◽  
Z. P. Feng

Three-dimensional numerical simulation was conducted to investigate the flow field and heat transfer performance of the Cross-Wavy Primary Surface (CWPS) recuperators for microturbines. Using high-effective compact recuperators to achieve high thermal efficiency is one of the key techniques in the development of microturbine in recent years. Recuperators need to have minimum volume and weight, high reliability and durability. Most important of all, they need to have high thermal-effectiveness and low pressure-losses so that the gas turbine system can achieve high thermal performances. These requirements have attracted some research efforts in designing and implementing low-cost and compact recuperators for gas turbine engines recently. One of the promising techniques to achieve this goal is the so-called primary surface channels with small hydraulic dimensions. In this paper, we conducted a three-dimensional numerical study of flow and heat transfer for the Cross-Wavy Primary Surface (CWPS) channels with two different geometries. In the CWPS configurations the secondary flow is created by means of curved and interrupted surfaces, which may disturb the thermal boundary layers and thus improve the thermal performances of the channels. To facilitate comparison, we chose the identical hydraulic diameters for the above four CWPS channels. Since our experiments on real recuperators showed that the Reynolds number ranges from 150 to 500 under the operating conditions, we implemented all the simulations under laminar flow situations. By analyzing the correlations of Nusselt numbers and friction factors vs. Reynolds numbers of the four CWPS channels, we found that the CWPS channels have superior and comprehensive thermal performance with high compactness, i.e., high heat transfer area to volume ratio, indicating excellent commercialized application in the compact recuperators.


Author(s):  
Jeffrey D. Ferguson ◽  
Dibbon K. Walters ◽  
James H. Leylek

For the first time in the open literature, code validation quality data and a well-tested, highly reliable computational methodology are employed to isolate the true performance of seven turbulence treatments in discrete jet film cooling. The present research examines both computational and high quality experimental data for two length-to-diameter ratios of a row of streamwise injected, cylindrical film holes. These two cases are used to document the performance of the following turbulence treatments: 1) standard k-ε model with generalized wall functions; 2) standard k-ε model with non-equilibrium wall functions: 3) Renormalization Group k-ε (RNG) model with generalized wall functions; 4) RNG model with non-equilibrium wall functions: 51 standard k-ε model with two-layer turbulence wall treatment; 6) Reynolds Stress Model (RSM) with generalized wall functions; and 7) RSM with non-equilibrium wall functions. Overall, the standard k-ε turbulence model with the two-layer near-wall treatment, which resolves the viscous sublayer, produces results that are more consistent with experimental data.


Author(s):  
G. M. Raposo ◽  
A. O. Nieckele

Development of small size and weight separation equipment are crucial for the petroleum off-shore exploration. Since centrifugal fields are several times stronger than the gravity field, cyclonic separation has became very important as a unit process for compact gas-liquid, liquid-liquid and solid-liquid separation. The major difference between the various cyclones is their geometry. Cyclone optimization for different uses is, every year, less based on experiments and more based on mathematical models. In the present work, the flow field inside high oil content hydrocyclones is numerically obtained with FLUENT. The performance of two turbulence models, Reynolds Stress Model (RSM) and Large Eddy Simulation (LES), to predict the flow inside a high oil content hydrocyclone, is investigated by comparing the results with experimental data available in the literature. All models overpredicted the tangential component, especially at the reverse cone region. However, the prediction of the tangential turbulent fluctuations with LES was significant better than the RSM prediction. The influences of the inlet flow rate and hydrocyclone length in the flow were also evaluated. RSM model was able to foresee correctly, in agreement with experimental data, the correct tendency of pressure drop reduction with decreasing inlet flow rate and increasing length.


Author(s):  
F. Mumic ◽  
L. Ljungkruna ◽  
B. Sunden

In this work, a numerical study has been performed to simulate the heat transfer and fluid flow in a transonic high-pressure turbine stator vane passage. Four turbulence models (the Spalart-Allmaras model, the low-Reynolds-number realizable k-ε model, the shear-stress transport (SST) k-ω model and the v2-f model) are used in order to assess the capability of the models to predict the heat transfer and pressure distributions. The simulations are performed using the FLUENT commercial software package, but also two other codes, the in-house code VolSol and the commercial code CFX are used for comparison with FLUENT results. The results of the three-dimensional simulations are compared with experimental heat transfer and aerodynamic results available for the so-called MT1 turbine stage. It is observed that the predictions of the vane pressure field agree well with experimental data, and that the pressure distribution along the profile is not strongly affected by choice of turbulence model. It is also shown that the v2-f model yields the best agreement with the measurements. None of the tested models are able to predict transition correctly.


Author(s):  
Mohammad R. Saadatmand

The aerodynamic design process leading to the production configuration of a 14 stage, 16:1 pressure ratio compressor for the Taurus 70 gas turbine is described. The performance of the compressor is measured and compared to the design intent. Overall compressor performance at the design condition was found to be close to design intent. Flow profiles measured by vane mounted instrumentation are presented and discussed. The flow through the first rotor blade has been modeled at different operating conditions using the Dawes (1987) three-dimensional viscous code and the results are compared to the experimental data. The CFD prediction agreed well with the experimental data across the blade span, including the pile up of the boundary layer on the corner of the hub and the suction surface. The rotor blade was also analyzed with different grid refinement and the results were compared with the test data.


Sign in / Sign up

Export Citation Format

Share Document