Computations of the Compressible Multiphase Flow Over the Cavitating High-Speed Torpedo

2003 ◽  
Vol 125 (3) ◽  
pp. 459-468 ◽  
Author(s):  
F. M. Owis ◽  
Ali H. Nayfeh

For high-speed cavitating flows, compressibility becomes significant in the liquid phase as well as in the vapor phase. In addition, the compressible energy equation is required for studying the effects of the propulsive jet on the cavity. Therefore, a numerical method is developed to compute cavitating flows over high-speed torpedoes using the full unsteady compressible Navier-Stokes equations. The multiphase system of equations is preconditioned for low-speed flow computations. Using the mass fraction form, we derive an eigensystem for both the conditioned and the nonconditioned system of equations. This eigensystem provides stability for the numerical discretization of the convective flux and increases the convergence rate. This method can be used to compute single as well as multiphase flows. The governing equations are discretized on a structured grid using an upwind flux difference scheme with flux limits. Single as well as multiphase flows are computed over a cavitating torpedo. The results indicate that the preconditioned system of equations converges rapidly to the required solution at very low speeds. The theoretical results are in good agreement with the measurements.

Fluids ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 168 ◽  
Author(s):  
Agostino Lauria ◽  
Giancarlo Alfonsi ◽  
Ali Tafarojnoruz

Ski jump spillways are frequently implemented to dissipate energy from high-speed flows. The general feature of this structure is to transform the spillway flow into a free jet up to a location where the impact of the jet creates a plunge pool, representing an area for potential erosion phenomena. In the present investigation, several tests with different ski jump bucket angles are executed numerically by means of the OpenFOAM® digital library, taking advantage of the Reynolds-averaged Navier–Stokes equations (RANS) approach. The results are compared to those obtained experimentally by other authors as related to the jet length and shape, obtaining physical insights into the jet characteristics. Particular attention is given to the maximum pressure head at the tailwater. Simple equations are proposed to predict the maximum dynamic pressure head acting on the tailwater, as dependent upon the Froude number, and the maximum pressure head on the bucket. Results of this study provide useful suggestions for the design of ski jump spillways in dam construction.


Author(s):  
K M Guleren ◽  
A Pinarbasi

The main goal of the present work is to analyse the numerical simulation of a centrifugal pump by solving Navier-Stokes equations, coupled with the ‘standard k-∊’ turbulence model. The pump consists of an impeller having five curved blades with nine diffuser vanes. The shaft rotates at 890r/min. Flow characteristics are assumed to be stalled in the appropriate region of flowrate levels of 1.31-2.861/s. Numerical analysis techniques are performed on a commercial FLUENT package program assuming steady, incompressible flow conditions with decreasing flowrate. Under stall conditions the flow in the diffuser passage alternates between outward jetting when the low-pass-filtered pressure is high to a reverse flow when the filtered pressure is low. Being below design conditions, there is a consistent high-speed leakage flow in the gap between the impeller and the diffuser from the exit side of the diffuser to the beginning of the volute. Separation of this leakage flow from the diffuser vane causes the onset of stall. As the flowrate decreases both the magnitude of the leakage within the vaneless part of the pump and reverse flow within a stalled diffuser passage increase. As this occurs, the stall-cell size extends from one to two diffuser passages. Comparisons are made with experimental data and show good agreement.


Author(s):  
Y Wang ◽  
S Komori

A pressure-based finite volume procedure developed previously for incompressible flows is extended to predict the three-dimensional compressible flow within a centrifugal impeller. In this procedure, the general curvilinear coordinate system is used and the collocated grid arrangement is adopted. Mass-averaging is used to close the instantaneous Navier-Stokes equations. The covariant velocity components are used as the main variables for the momentum equations, making the pressure-velocity coupling easier. The procedure is successfully applied to predict various compressible flows from subsonic to supersonic. With the aid of the k-ɛ turbulence model, the flow details within a centrifugal impeller are obtained using the present procedure. Predicted distributions of the meridional velocity and the static pressure are reasonable. Calculated radial velocities and flow angles are favourably compared with the measurements at the exit of the impeller.


2014 ◽  
Vol 1070-1072 ◽  
pp. 1972-1977
Author(s):  
Lang Li ◽  
Guo Ping Cheng ◽  
Guo Quan Zhu ◽  
Wei Zhang

Based on Navier-stokes equations, Weiss-Smith matrix preconditioning method is implemented within pseudo time derivative term. AUSM+-up family schemes and LU-SGS implicit iterative method were used to solve low speed flows and were compared with literature data and theoretical value. Through comparing calculation with the literature data and theoretical value, The Results showed the preconditioning algorithm can be applied efficiently to the low speeds flow field ,All these works built foundations for further application of chemical flows.


Author(s):  
H. K. Nakhla ◽  
B. E. Thompson

An engineering model is presented to calculate the trajectory of airborne debris that adversely affects visibility during high-speed snow plowing. Reynolds-averaged Navier-Stokes equations are solved numerically with turbulence-modeling, particle-tracking, and cutting-edge approximations. Results suggest snow can be divided into splash and snow-cloud when designing treatments to improve visibility for snowplow drivers and following traffic. Calculated results confirm the findings of windtunnel and road tests, specifically that the trap angle of overplow deflectors should be less than 50 degrees to eliminate snow debris blowing over top of the plow onto the windscreen.


1987 ◽  
Vol 109 (1) ◽  
pp. 71-76 ◽  
Author(s):  
J. O. Medwell ◽  
D. T. Gethin ◽  
C. Taylor

The performance of a cylindrical bore bearing fed by two axial grooves orthogonal to the load line is analyzed by solving the Navier-Stokes equations using the finite element method. This produces detailed information about the three-dimensional velocity and pressure field within the hydrodynamic film. It is also shown that the method may be applied to long bearing geometries where recirculatory flows occur and in which the governing equations are elliptic. As expected the analysis confirms that lubricant inertia does not affect bearing performance significantly.


Author(s):  
David Jon Furbish

Many geological flows involve turbulence, wherein the velocity field involves complex, fluctuating motions superimposed on a mean motion. Flows in natural river channels are virtually always turbulent. Magma flow in dikes and sills, and lava flows, can be turbulent. Atmospheric flows involving eolian transport are turbulent. The complex, convective overturning of fluid in a magma chamber or geyser is a form of turbulence. Thus, a description of the basic qualities of these complex flows is essential for understanding many geological flow phenomena. Turbulent flows generally are associated with large Reynolds numbers. Recall from Chapter 5 that the Reynolds number Re is a measure of the ratio of inertial to viscous forces acting on a fluid element, . . . Re = ρUL/μ . . . . . . (14.1) . . . where the characteristic velocity U and length L are defined in terms of the particular flow system. Thus, turbulence is typically associated, for given fluid density ρ and viscosity μ, with high-speed flows (although we must be careful in applying this generality to thermally driven convective motions; see Chapter 16). A simple, visual illustration of this occurs when smoke rises from a cigar within otherwise calm, surrounding air. The smoke acts as a flow tracer. Smoke molecules at the cigar tip start from rest, since they are initially attached to the cigar. Upward fluid motion, as traced by the smoke, initially is of low speed, and viscous forces have a relatively important influence on its behavior. The flow is laminar; smoke streaklines are smooth and locally parallel. But as the flow accelerates upward, it typically reaches a point where viscous forces are no longer sufficient to damp out destabilizing effects of growing inertial forces, and the flow becomes turbulent, manifest as whirling, swirling fluid motions (see Tolkien [1937]). Throughout this chapter we will consider only incompressible Newtonian fluids. Unfortunately, the complexity of turbulent fluid motions precludes directly using the Navier–Stokes equations to describe them. Instead, we will adopt a procedure whereby the Navier–Stokes equations are recast in terms of temporally averaged or spatially averaged values of velocity and pressure, and fluctuations about these averages.


Sign in / Sign up

Export Citation Format

Share Document