High Power Density Silicon Combustion Systems for Micro Gas Turbine Engines

2003 ◽  
Vol 125 (3) ◽  
pp. 709-719 ◽  
Author(s):  
C. M. Spadaccini ◽  
A. Mehra ◽  
J. Lee ◽  
X. Zhang ◽  
S. Lukachko ◽  
...  

As part of an effort to develop a microscale gas turbine engine for power generation and micropropulsion applications, this paper presents the design, fabrication, experimental testing, and modeling of the combustion system. Two radial inflow combustor designs were examined; a single-zone arrangement and a primary and dilution-zone configuration. Both combustors were micromachined from silicon using deep reactive ion etching (DRIE) and aligned fusion wafer bonding. Hydrogen-air and hydrocarbon-air combustion were stabilized in both devices, each with chamber volumes of 191mm3. Exit gas temperatures as high as 1800 K and power densities in excess of 1100MW/m3 were achieved. For the same equivalence ratio and overall efficiency, the dual-zone combustor reached power densities nearly double that of the single-zone design. Because diagnostics in microscale devices are often highly intrusive, numerical simulations were used to gain insight into the fluid and combustion physics. Unlike large-scale combustors, the performance of the microcombustors was found to be more severely limited by heat transfer and chemical kinetics constraints. Important design trades are identified and recommendations for microcombustor design are presented.

Author(s):  
C. M. Spadaccini ◽  
J. Lee ◽  
S. Lukachko ◽  
I. A. Waitz ◽  
A. Mehra ◽  
...  

As part of an effort to develop a micro-scale gas turbine engine for power generation and micro-propulsion applications, this paper presents the design, fabrication, experimental testing, and modeling of the combustion system. Two radial inflow combustor designs were examined; a single-zone arrangement and a primary and dilution-zone configuration. Both combustors were micro-machined from silicon using Deep Reactive Ion Etching (DRIE) and aligned fusion wafer bonding. Hydrogen-air and hydrocarbon-air combustion was stabilized in both devices, each with chamber volumes of 191 mm3. Exit gas temperatures as high as 1800 K and power densities in excess of 1100 MW/m3 were achieved. For the same equivalence ratio and overall efficiency, the dual-zone combustor reached power densities nearly double that of the single-zone design. Because diagnostics in micro-scale devices are often highly intrusive, numerical simulations were used to gain insight into the fluid and combustion physics. Unlike large-scale combustors, the performance of the micro-combustors was found to be more severely limited by heat transfer and chemical kinetics constraints. Important design trades are identified and recommendations for micro-combustor design are presented.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Anderson A. ◽  
Karthikeyan A. ◽  
Ramesh Kumar C. ◽  
Ramachandran S. ◽  
Praveenkumar T.R.

Purpose The purpose of this study is to predict the performance and emission characteristics of micro gas turbine engines powered by alternate fuels. The micro gas turbine engine performance, combustion and emission characteristics are analyzed for the jet fuel with different additives. Design/methodology/approach The experimental investigation was carried out with Jet A-1 fuel on the gas turbine engines at different load conditions. The primary blends of the Jet A-1 fuels are from canola and solid waste pyrolysis oil. Then the ultrasonication of highly concentrated multiwall carbon nanotubes is carried with the primary blends of canola (Jet-A fuel 70%, canola 20% and 10% ethanol) and P20E (Jet-A 70% fuel, 20% PO and 10% ethanol). Findings The consumption of the fuel is appreciable with the blends at a very high static thrust. The 39% reduction in thrust specific fuel consumption associated with a 32% enhance in static thrust with P20E blend among different fuel blends. Moreover, due to the increase in ethanol concentration in the blends PO20E and C20E lead to a 22% rise in thermal efficiency and a 9% increase in higher oxygen content is observed. Practical implications The gas turbine engine emits very low emission of gases such as CO, CO2 and NOx by using the fuel blends, which typically reduces the fossil fuel usage limits with reduced pollutants. Originality/value The emission of the gas turbine engines is further optimized with the addition of hydrogen in Jet-A fuel. That is leading to high specific fuel exergy and owing to the lower carbon content in the hydrogen fuel when compared with that of the fossil fuels used in gas turbine engines. Therefore, the usage of hydrogen with nanofluids was so promising based on the results obtained for replacing fossil fuels.


1998 ◽  
Vol 120 (1) ◽  
pp. 109-117 ◽  
Author(s):  
Ian A. Waitz ◽  
Gautam Gauba ◽  
Yang-Sheng Tzeng

The development of a hydrogen-air microcombustor is described. The combustor is intended for use in a 1 mm2 inlet area, micro-gas turbine engine. While the size of the device poses several difficulties, it also provides new and unique opportunities. The combustion concept investigated is based upon introducing hydrogen and premixing it with air upstream of the combustor. The wide flammability limits of hydrogen-air mixtures and the use of refractory ceramics enable combustion at lean conditions, obviating the need for both a combustor dilution zone and combustor wall cooling. The entire combustion process is carried out at temperatures below the limitations set by material properties, resulting in a significant reduction of complexity when compared to larger-scale gas turbine combustors. A feasibility study with initial design analyses is presented, followed by experimental results from 0.13 cm3 silicon carbide and steel microcombustors. The combustors were operated for tens of hours, and produced the requisite heat release for a microengine application over a range of fuel-air ratios, inlet temperatures, and pressures up to four atmospheres. Issues of flame stability, heat transfer, ignition and mixing are addressed. A discussion of requirements for catalytic processes for hydrocarbon fuels is also presented.


Author(s):  
P. A. Phillips ◽  
Peter Spear

After briefly summarizing worldwide automotive gas turbine activity, the paper analyses the power plant requirements of a wide range of vehicle applications in order to formulate the design criteria for acceptable vehicle gas turbines. Ample data are available on the thermodynamic merits of various gas turbine cycles; however, the low cost of its piston engine competitor tends to eliminate all but the simplest cycles from vehicle gas turbine considerations. In order to improve the part load fuel economy, some complexity is inevitable, but this is limited to the addition of a glass ceramic regenerator in the 150 b.h.p. engine which is described in some detail. The alternative further complications necessary to achieve satisfactory vehicle response at various power/weight ratios are examined. Further improvement in engine performance will come by increasing the maximum cycle temperature. This can be achieved at lower cost by the extension of the use of ceramics. The paper is intended to stimulate the design application of the gas turbine engine.


NDT World ◽  
2021 ◽  
pp. 58-61
Author(s):  
Aleksey Popov ◽  
Aleksandr Romanov

A large number of aviation events are associated with the surge of gas turbine engines. The article analyzes the existing systems for diagnostics of the surge of gas turbine engines. An analysis of the acoustic signal of a properly operating gas turbine engine was carried out, at which a close theoretical distribution of random values was determined, which corresponds to the studied distribution of the amplitudes of the acoustic signal. An invariant has been developed that makes it possible to evaluate the development of rotating stall when analyzing the acoustic signal of gas turbine engines. A method is proposed for diagnosing the pre-surge state of gas turbine engines, which is based on processing an acoustic signal using invariant dependencies for random processes. A hardware-software complex has been developed using the developed acoustic method for diagnosing the pre-surge state of gas turbine engines.


2021 ◽  
Author(s):  
Jeffrey S. Patterson ◽  
Kevin Fauvell ◽  
Dennis Russom ◽  
Willie A. Durosseau ◽  
Phyllis Petronello ◽  
...  

Abstract The United States Navy (USN) 501-K Series Radiological Controls (RADCON) Program was launched in late 2011, in response to the extensive damage caused by participation in Operation Tomodachi. The purpose of this operation was to provide humanitarian relief aid to Japan following a 9.0 magnitude earthquake that struck 231 miles northeast of Tokyo, on the afternoon of March 11, 2011. The earthquake caused a tsunami with 30 foot waves that damaged several nuclear reactors in the area. It was the fourth largest earthquake on record (since 1900) and the largest to hit Japan. On March 12, 2011, the United States Government launched Operation Tomodachi. In all, a total of 24,000 troops, 189 aircraft, 24 naval ships, supported this relief effort, at a cost in excess of $90.0 million. The U.S. Navy provided material support, personnel movement, search and rescue missions and damage surveys. During the operation, 11 gas turbine powered U.S. warships operated within the radioactive plume. As a result, numerous gas turbine engines ingested radiological contaminants and needed to be decontaminated, cleaned, repaired and returned to the Fleet. During the past eight years, the USN has been very proactive and vigilant with their RADCON efforts, and as of the end of calendar year 2019, have successfully completed the 501-K Series portion of the RADCON program. This paper will update an earlier ASME paper that was written on this subject (GT2015-42057) and will summarize the U.S. Navy’s 501-K Series RADCON effort. Included in this discussion will be a summary of the background of Operation Tomodachi, including a discussion of the affected hulls and related gas turbine equipment. In addition, a discussion of the radiological contamination caused by the disaster will be covered and the resultant effect to and the response by the Marine Gas Turbine Program. Furthermore, the authors will discuss what the USN did to remediate the RADCON situation, what means were employed to select a vendor and to set up a RADCON cleaning facility in the United States. And finally, the authors will discuss the dispensation of the 501-K Series RADCON assets that were not returned to service, which include the 501-K17 gas turbine engine, as well as the 250-KS4 gas turbine engine starter. The paper will conclude with a discussion of the results and lessons learned of the program and discuss how the USN was able to process all of their 501-K34 RADCON affected gas turbine engines and return them back to the Fleet in a timely manner.


Author(s):  
Matthew Driscoll ◽  
Thomas Habib ◽  
William Arseneau

The United States Navy uses the General Electric LM2500 gas turbine engine for main propulsion on its newest surface combatants including the OLIVER HAZARD PERRY (FFG 7) class frigates, SPRUANCE (DD 963) class destroyers, TICONDEROGA (CG 47) class cruisers, ARLIEGH BURKE (DDG 51) class destroyers and SUPPLY (AOE 6) class oilers. Currently, the Navy operates a fleet of over 400 LM2500 gas turbine engines. This paper discusses the ongoing efforts to characterize the availability of the engines aboard ship and pinpoint systems/components that have significant impact on engine reliability. In addition, the program plan to upgrade the LM2500’s standard configuration to improve reliability is delineated.


Author(s):  
Joshua A. Clough ◽  
Mark J. Lewis

The development of new reusable space launch vehicle concepts has lead to the need for more advanced engine cycles. Many two-stage vehicle concepts rely on advanced gas turbine engines that can propel the first stage of the launch vehicle from a runway up to Mach 5 or faster. One prospective engine for these vehicles is the Air Turborocket (ATR). The ATR is an innovative aircraft engine flowpath that is intended to extend the operating range of a conventional gas turbine engine. This is done by moving the turbine out of the core engine flow, alleviating the traditional limit on the turbine inlet temperature. This paper presents the analysis of an ATR engine for a reusable space launch vehicle and some of the practical problems that will be encountered in the development of this engine.


2020 ◽  
Vol 19 (4) ◽  
pp. 43-57
Author(s):  
H. H. Omar ◽  
V. S. Kuz'michev ◽  
A. O. Zagrebelnyi ◽  
V. A. Grigoriev

Recent studies related to fuel economy in air transport conducted in our country and abroad show that the use of recuperative heat exchangers in aviation gas turbine engines can significantly, by up to 20...30%, reduce fuel consumption. Until recently, the use of cycles with heat recovery in aircraft gas turbine engines was restrained by a significant increase in the mass of the power plant due to the installation of a heat exchanger. Currently, there is a technological opportunity to create compact, light, high-efficiency heat exchangers for use on aircraft without compromising their performance. An important target in the design of engines with heat recovery is to select the parameters of the working process that provide maximum efficiency of the aircraft system. The article focused on setting of the optimization problem and the choice of rational parameters of the thermodynamic cycle parameters of a gas turbine engine with a recuperative heat exchanger. On the basis of the developed method of multi-criteria optimization the optimization of thermodynamic cycle parameters of a helicopter gas turbine engine with a ANSAT recuperative heat exchanger was carried out by means of numerical simulations according to such criteria as the total weight of the engine and fuel required for the flight, the specific fuel consumption of the aircraft for a ton- kilometer of the payload. The results of the optimization are presented in the article. The calculation of engine efficiency indicators was carried out on the basis of modeling the flight cycle of the helicopter, taking into account its aerodynamic characteristics. The developed mathematical model for calculating the mass of a compact heat exchanger, designed to solve optimization problems at the stage of conceptual design of the engine and simulation of the transport helicopter flight cycle is presented. The developed methods and models are implemented in the ASTRA program. It is shown that optimal parameters of the working process of a gas turbine engine with a free turbine and a recuperative heat exchanger depend significantly on the heat exchanger effectiveness. The possibility of increasing the efficiency of the engine due to heat regeneration is also shown.


Author(s):  
J. Pismenny ◽  
Y. Levy

The dependence of the vibration characteristics of gas turbine engines on the rotor speeds becomes highly complicated in engines with two and three rotors, both because of the simultaneous dynamic action of the multiple rotors and the ambiguous relationships between their speeds. In this paper, the gas turbine engine is analyzed in the context of the theory of non-linear oscillation — as a complex system comprising a large number of non-linear elements and multiple periodical forces of different frequencies (defined by the rotor speeds). This paper presents results, which indicate that the level of vibration can obtain critical values at certain relationships between the rotor speeds. As a practical application of this phenomena it is shown that the number of three-spool engines returns from the aircraft to the engine manufacturer, due to different kinds of malfunctions, for example due to activation of the “intensified vibration” alarm, may be approximately three times that of returns of analogous two-rotor engines.


Sign in / Sign up

Export Citation Format

Share Document