Nonlinear Response and Failure of Steel Elbows Under In-Plane Bending and Pressure

2003 ◽  
Vol 125 (4) ◽  
pp. 393-402 ◽  
Author(s):  
S. A. Karamanos ◽  
E. Giakoumatos ◽  
A. M. Gresnigt

The paper investigates the response of elbows under in-plane bending and pressure, through nonlinear finite element tools, supported by experimental results from real-scale tests. The finite element analysis is mainly based on a nonlinear three-node “tube element,” capable of describing elbow deformation in a rigorous manner, considering geometric and material nonlinearities. Furthermore, a nonlinear shell element from a general-purpose finite element program is employed in some special cases. Numerical results are compared with experimental data from steel elbow specimens. The comparison allows the investigation of important issues regarding deformation and ultimate capacity of elbows, with emphasis on relatively thin-walled elbows. The results demonstrate the effects of pressure and the influence of straight pipe segments. Finally, using the numerical tools, failure of elbows under bending moments is examined (cross-sectional flattening or local buckling), and reference to experimental observations is made.

2005 ◽  
Vol 128 (3) ◽  
pp. 348-356 ◽  
Author(s):  
S. A. Karamanos ◽  
D. Tsouvalas ◽  
A. M. Gresnigt

The paper examines the nonlinear elastic-plastic response of internally pressurized 90 deg pipe elbows under in-plane and out-of-plane bending. Nonlinear shell elements from a general-purpose finite element program are employed to model the inelastic response of steel elbows and the adjacent straight parts. The numerical results are successfully compared with real-scale experimental measurements. The paper also presents a parametric study, aimed at investigating the effects of diameter-to-thickness ratio and moderate pressure levels on the ultimate bending capacity of 90 deg elbows, focusing on the failure mode (local buckling or cross-sectional flattening) and the maximum bending moment. Special attention is given to the response of 90 deg elbows under out-of-plane bending moments.


1998 ◽  
Vol 120 (4) ◽  
pp. 263-267 ◽  
Author(s):  
A. C. Seibi ◽  
A. M. Al-Shabibi

The present paper describes the running process in horizontal wells and studies the effect of some factors on running forces required to push pipes through curved holes with short to medium radii of curvatures. Estimation of the running forces was performed using a general-purpose finite element program called ANSYS. The effect of pipe bending stiffness, hole radius of curvature, and hole clearance are investigated. Finite element results showed that the pipe bending stiffness becomes insignificant for medium curvatures (i.e., radius of curvature greater than 80 m). It was also found that the running force at the kick-off point (k.o.p) increases as the radius of curvature shortens (severe doglegs) and as the pipe stiffness increases. In addition, FE results revealed that the effect of hole clearance on the running force is negligible.


Author(s):  
Shigeru Nagasawa ◽  
Hiroshi Hasegawa ◽  
Yasunori Miyata ◽  
Yasushi Fukuzawa ◽  
Hiroshi Sakuta

Abstract This paper deals with performance of support system for finite element modeling and with a methodology for case retrieval. A support system was developed with the hypertext markup language and the common gateway interface facilities. The query response of proposed case retrieving method, based on the hamming distance with a vectorized attribute coding, was verified experimentally through an usage examples for a general purpose finite element program.


2014 ◽  
Vol 501-504 ◽  
pp. 731-735
Author(s):  
Li Zhang ◽  
Kang Li

This paper analyzes the influence degree of related design parameters of wire-mesh frame wallboard on deformation through finite element program, providing theoretical basis for the design and test of steel wire rack energy-saving wallboard.


2018 ◽  
Vol 13 (2) ◽  
pp. 146-155 ◽  
Author(s):  
Zhuoya Yuan ◽  
Pui-Lam Ng ◽  
Darius Bačinskas ◽  
Jinsheng Du

To consider the effect of non-uniform shrinkage of box girder sections on the long-term deformations of continuous rigid frame bridges, and to improve the prediction accuracy of analysis in the design phase, this paper proposes a new simulation technique for use with general-purpose finite element program. The non-uniform shrinkage effect of the box girder is transformed to an equivalent temperature gradient and then applied as external load onto the beam elements in the finite element analysis. Comparative analysis of the difference in deflections between uniform shrinkage and nonuniform shrinkage of the main girder was made for a vehicular bridge in reality using the proposed technique. The results indicate that the maximum deflection of box girder under the action of non-uniform shrinkage is much greater than that under the action of uniform shrinkage. The maximum downward deflection of the bridge girder caused by uniform shrinkage is 5.6 mm at 20 years after completion of bridge deck construction, whereas the maximum downward deflection caused by non-uniform shrinkage is 21.6 mm, which is 3.8 times larger. This study shows that the non-uniform shrinkage effect of the girder sections has a significant impact on the long-term deflection of continuous rigid frame bridge, and it can be accurately simulated by the proposed transformation technique.


Author(s):  
Makoto Tanabe ◽  
Hajime Wakui ◽  
Nobuyuki Matsumoto

Abstract A finite element formulation to solve the dynamic behavior of high-speed Shinkansen cars, rail, and bridge is given. A mechanical model to express the interaction between wheel and rail is described, in which the impact of the rail on the flange of wheel is also considered. The bridge is modeled by using various finite elements such as shell, beam, solid, spring, and mass. The equations of motions of bridge and Shinkansen cars are solved under the constitutive and constraint equations to express the interaction between rail and wheel. Numerical method based on a modal transformation to get the dynamic response effectively is discussed. A finite element program for the dynamic response analysis of Shinkansen cars, rail, and bridge at the high-speed running has been developed. Numerical examples are also demonstrated.


2011 ◽  
Vol 225-226 ◽  
pp. 823-826
Author(s):  
Yu Feng Zhang ◽  
Guo Fu Sun

As a part of virtual simulation of construction processes, this paper deals with the quantitative risk analysis for the construction phases of the CFST arch bridge. The main objectives of the study are to evaluate the risks by considering an ultimate limit state for the fracture of cable wires and to evaluate the risks for a limit state for the erection control during construction stages. Many researches have been evaluated the safety of constructed bridges, the uncertainties of construction phases have been ignored. This paper adopts the 3D finite element program ANSYS to establish the space model of CFST Arch Bridge, and to calculate the linear, the geometrical nonlinear and the double nonlinear buckling safety factors under the six different lode cases. Then the bridge’s risks are evaluated according to the results calculated which provide a reference for design of similar project.


1991 ◽  
Vol 226 ◽  
Author(s):  
Yi-Hsin Pao ◽  
Kuan-Luen Chen ◽  
An-Yu Kuo

AbstractA nonlinear and time dependent finite element analysis was performed on two surface mounted electronic devices subjected to thermal cycling. Constitutive equations accounting for both plasticity and creep for 37Pb/63Sn and 90Pb/10Sn solders were assumed and implemented in a finite element program ABAQUS with the aid of a user subroutine. The FE results of 37Pb/63Sn solder joints were in reasonably good agreement with the experimental data by Hall [19]. In the case of 9OPb/1OSn solder in a multilayered transistor stack, the FE results showed the existence of strong peel stress near the free edge of the joint, in addition to the anticipated shear stress. The effect of such peel stress on the crack initiation and growth as a result of thermal cycling was discussed, together with the singular behavior of both shear and peel stresses near the free edge.


2017 ◽  
Vol 24 (3) ◽  
pp. 415-422 ◽  
Author(s):  
Ke Chun Shen ◽  
Guang Pan ◽  
JiangFeng Lu

AbstractThe buckling and layer failure characteristics of composite laminated cylinders subjected to hydrostatic pressure were investigated through finite element analysis for underwater vehicle application. The Tsai-Wu failure criteria were used as the failure criteria for the buckling analysis. A sensitivity analysis was conducted to research the influence of the number of elements on the critical buckling pressure. ANSYS, a finite element program, successfully predicted the buckling pressure with 5.3–27.8% (linear) and 0.3–22.5% (nonlinear) deviation from experimental results. The analysis results showed that the cylinders can carry more pressure after a slight decrease in pressure and recovery of the supporting load. For layer failure analysis, it was found that the failure that occurred in the 0° layer was more serious than that in the 90° layer within the neighboring layers at the inner layers (nos. 1–7) and outer layers (nos. 8–24).


1980 ◽  
Vol 102 (1) ◽  
pp. 62-69 ◽  
Author(s):  
T. Belytschko ◽  
J. M. Kennedy ◽  
D. F. Schoeberle

A quasi-Eulerian formulation is developed for fluid-structure interaction analysis in which the fluid nodes are allowed to move independent of the material thus facilitating the treatment of problems with large structural motions. The governing equations are presented in general form and then specialized to two-dimensional plane and axisymmetric geometries. These elements have been incorporated in a general purpose transient finite element program and results are presented for two problems and compared to experimental results.


Sign in / Sign up

Export Citation Format

Share Document