Analysis of Cycle Configurations for the Modernization of Combined Heat and Power Plant by Fitting a Gas Turbine System

2004 ◽  
Vol 126 (4) ◽  
pp. 816-822 ◽  
Author(s):  
Tadeusz Chmielniak ◽  
Gerard Kosman ◽  
Wojciech Kosman

The application of a gas turbine generally allows to increase the number of possible configurations of cogenerated heat and electrical power systems, which became a significant substitute for classic, coal-fired power plants. They are characterized by better thermodynamical, economical, ecological, and operating indexes. Gas turbine units are also the best option for the modernization of existing power plants. This paper discusses the effectiveness of various technological configurations with gas turbines, which are to be applied during modernization projects of already existing conventional combined heat and power plants. In the analysis enthalpy and entropy methods were applied. Algorithms of the entropy method allow to determine the entropy generation in each section of a combined heat and power (CHP) plant. Several criteria were taken into consideration while analyzing the effectiveness of technological cycle configurations with gas turbines. These include the energy effectiveness, the efficiency of the HRSG and the steam cycle, the efficiency of the whole thermal electric power station, the exergetic efficiency of the HRSG and the steam cycle, and the fuel efficiency index. It was assumed that gas turbines operate under their nominal conditions. The composite curves were also taken into consideration while choosing the type of the turbine. The modernization project tends not to eliminate those existing power plant sections (machines and equipment), which are able to operate further. The project suggests that those units should remain in the system, which satisfy the applied durability criterion. The last phase of the optimization project focuses on the sensibility verification of several steam-gas CHP plant parameters and their influence on the whole system.

Author(s):  
Tadeusz Chmielniak ◽  
Gerard Kosman ◽  
Wojciech Kosman

The application of a gas turbine generally allows to increase the number of possible configurations of cogenerated heat and electrical power systems, which became a significant substitute for classic, coal-fired power plants. They are characterized by better thermodynamical, economical, ecological and operating indexes. Gas turbine units are also the best option for the moderinization of existing power plants. This paper discusses the effectiveness of various technological configurations with gas turbines, which are to be applied during modernization projects of already existing conventional combined heat and power plants. In the analysis and entropy methods were applied. Algorithms of the entropy method allow to determine the entropy generation in each section of a combined heat and power (CHP) plant. Several criteria were taken into consideration while analyzing the effectiveness of technological cycle configurations with gas turbines. These include the energy effectiveness, the efficiency of the HRSG and the steam cycle, the efficiency of the whole thermal electric power station, the exergetic efficiency of the HRSG and the steam cycle, and the fuel efficiency index. It was assumed that gas turbines operate under their nominal conditions. The composite curves were also taken into consideration while choosing the type of the turbine. The modernization project tends not to eliminate those exiqsting power plant sections (machines and equipment), which are able to operate further. The project suggests that those units should remain in the system, which satisfy the applied durability criterion. The last phase of the optimization project focuses on the sensibility verification of several steam-gas CHP plant parameters and their influence on the whole system.


Author(s):  
P. Shukla ◽  
M. Izadi ◽  
P. Marzocca ◽  
D. K. Aidun

The objective of this paper is to evaluate methods to increase the efficiency of a gas turbine power plant. Advanced intercooled gas turbine power plants are quite efficient, efficiency reaching about 47%. The efficiency could be further increased by recovering wasted heat. The system under consideration includes an intercooled gas turbine. The heat is being wasted in the intercooler and a temperature drop happens at the exhaust. For the current system it will be shown that combining the gas cycle with steam cycle and removing the intercooler will increase the efficiency of the combined cycle power plant up to 60%. In combined cycles the efficiency depends greatly on the exhaust temperature of the gas turbine and the higher gas temperature leads to the higher efficiency of the steam cycle. The analysis shows that the latest gas turbines with the intercooler can be employed more efficiently in a combined cycle power application if the intercooler is removed from the system.


2019 ◽  
Vol 141 (05) ◽  
pp. 46-48
Author(s):  
Lee S. Langston

An updated report is given on the University of Connecticut’s gas turbine combined heat and power plant, now in operation for 13 years after its start in 2006. It has supplied the Storrs Campus with all of its electricity, heating and cooling needs, using three gas turbines that are the heart of the CHP plant. In addition to saving more than $180 million over its projected 40 year life, the CHP plant provides educational benefits for the University.


2021 ◽  
Vol 286 ◽  
pp. 04013
Author(s):  
George Iulian Balan ◽  
Octavian Narcis Volintiru ◽  
Ionut Cristian Scurtu ◽  
Florin Ioniță ◽  
Mirela Letitia Vasile ◽  
...  

Vessels that have navigation routes in areas with ambient temperatures that can drop below + 5 [°C], with a relative humidity of over 65%, will have implemented technical solutions for monitoring and combating ice accumulations in the intake routes of gas turbine power plants. Because gas turbines are not designed and built to allow the admission of foreign objects (in this case - ice), it is necessary to avoid the accumulation of ice through anti-icing systems and not to melt ice through defrost systems. Naval anti-icing systems may have as a source of energy flow compressed air, supersaturated steam, exhaust gases, electricity or a combination of those listed. The monitoring and optimization of the operation of the anti-icing system gives the gas turbine power plant an operation as close as possible to the normal regimes stipulated in the ship's construction or retrofit specification.


Author(s):  
Alberto Vannoni ◽  
Andrea Giugno ◽  
Alessandro Sorce

Abstract Renewable energy penetration is growing, due to the target of greenhouse-gas-emission reduction, even though fossil fuel-based technologies are still necessary in the current energy market scenario to provide reliable back-up power to stabilize the grid. Nevertheless, currently, an investment in such a kind of power plant might not be profitable enough, since some energy policies have led to a general decrease of both the average price of electricity and its variability; moreover, in several countries negative prices are reached on some sunny or windy days. Within this context, Combined Heat and Power systems appear not just as a fuel-efficient way to fulfill local thermal demand, but also as a sustainable way to maintain installed capacity able to support electricity grid reliability. Innovative solutions to increase both the efficiency and flexibility of those power plants, as well as careful evaluations of the economic context, are essential to ensure the sustainability of the economic investment in a fast-paced changing energy field. This study aims to evaluate the economic viability and environmental impact of an integrated solution of a cogenerative combined cycle gas turbine power plant with a flue gas condensing heat pump. Considering capital expenditure, heat demand, electricity price and its fluctuations during the whole system life, the sustainability of the investment is evaluated taking into account the uncertainties of economic scenarios and benchmarked against the integration of a cogenerative combined cycle gas turbine power plant with a Heat-Only Boiler.


1995 ◽  
Vol 117 (1) ◽  
pp. 47-52 ◽  
Author(s):  
V. R. Dhole ◽  
J. P. Zheng

Pinch technology has developed into a powerful tool for thermodynamic analysis of chemical processes and associated utilities, resulting in significant energy savings. Conventional pinch analysis identifies the most economical energy consumption in terms of heat loads and provides practical design guidelines to achieve this. However, in analyzing systems involving heat and power, for example, steam and gas turbines, etc., pure heat load analysis is insufficient. Exergy analysis, on the other hand, provides a tool for heat and power analysis, although at times it does not provide clear practical design guidelines. An appropriate combination of pinch and exergy analysis can provide practical methodology for the analysis of heat and power systems. The methodology has been successfully applied to refrigeration systems. This paper introduces the application of a combined pinch and exergy approach to commercial power plants with a demonstration example of a closed-cycle gas turbine (CCGT) system. Efficiency improvement of about 0.82 percent (50.2 to 51.02 percent) can be obtained by application of the new approach. More importantly, the approach can be used as an analysis and screening tool for the various design improvements and is generally applicable to any commercial power generation facility.


Author(s):  
F. L. Robson ◽  
D. J. Seery

The Department of Energy’s Federal Energy Technology Center (FETC) is sponsoring the Combustion 2000 Program aimed at introducing clean and more efficient advanced technology coal-based power systems in the early 21st century. As part of this program, the United Technologies Research Center has assembled a seven member team to identify and develop the technology for a High Performance Power Systems (HIPPS) that will provide in the near term, 47% efficiency (HHV), and meet emission goals only one-tenth of current New Source Performance Standards for coal-fired power plants. In addition, the team is identifying advanced technologies that could result in HIPPS with efficiencies approaching 55% (HHV). The HIPPS is a combined cycle that uses a coal-fired High Temperature Advanced Furnace (HITAF) to preheat compressor discharge air in both convective and radiant heaters. The heated air is then sent to the gas turbine where additional fuel, either natural gas or distillate, is burned to raise the temperature to the levels of modern gas turbines. Steam is raised in the HITAF and in a Heat Recovery Steam Generator for the steam bottoming cycle. With state-of-the-art frame type gas turbines, the efficiency goal of 47% is met in a system with more than two-thirds of the heat input furnished by coal. By using advanced aeroderivative engine technology, HIPPS in combined-cycle and Humid Air Turbine (HAT) cycle configurations could result in efficiencies of over 50% and could approach 55%. The following paper contains descriptions of the HIPPS concept including the HITAF and heat exchangers, and of the various gas turbine configurations. Projections of HIPPS performance, emissions including significant reduction in greenhouse gases are given. Application of HIPPS to repowering is discussed.


1973 ◽  
Vol 187 (1) ◽  
pp. 17-29 ◽  
Author(s):  
D. Broome

The interest in gas turbines as power plants for future heavy commercial vehicles has promoted a general study of power plant requirements for this application over the next decade, including likely demand and power levels. With this as a guide, trends in the development of the diesel engine are examined, and predictions made of speeds, mean brake effective pressures and configurations which might result. Some areas of technical interest are discussed. It is concluded that the diesel will continue to meet operator requirements in the period considered, and will remain fully competitive with alternatives.


Author(s):  
Christian Engelbert ◽  
Joseph J. Fadok ◽  
Robert A. Fuller ◽  
Bernd Lueneburg

Driven by the requirements of the US electric power market, the suppliers of power plants are challenged to reconcile both plant efficiency and operating flexibility. It is also anticipated that the future market will require more power plants with increased power density by means of a single gas turbine based combined-cycle plant. Paramount for plant efficiency is a highly efficient gas turbine and a state-of-the-art bottoming cycle, which are well harmonized. Also, operating and dispatch flexibility requires a bottoming cycle that has fast start, shutdown and cycling capabilities to support daily start and stop cycles. In order to meet these requirements the author’s company is responding with the development of the single-shaft 1S.W501G combined-cycle power plant. This nominal 400MW class plant will be equipped with the highly efficient W501G gas turbine, hydrogen-cooled generator, single side exhausting KN steam turbine and a Benson™ once-through heat recovery steam generator (Benson™-OT HRSG). The single-shaft 1S.W501G design will allow the plant not only to be operated economically during periods of high demand, but also to compete in the traditional “one-hour-forward” trading market that is served today only by simple-cycle gas turbines. By designing the plant with fast-start capability, start-up emissions, fuel and water consumption will be dramatically reduced. This Reference Power Plant (RPP) therefore represents a logical step in the evolution of combined-cycle power plant designs. It combines both the experiences of the well-known 50Hz single-shaft 1S.V94.3A plant with the fast start plant features developed for the 2.W501F multi-shaft RPP. The paper will address results of the single-shaft 1S.W501G development program within the authors’ company.


Author(s):  
W. Peter Sarnacki ◽  
Richard Kimball ◽  
Barbara Fleck

The integration of micro turbine engines into the engineering programs offered at Maine Maritime Academy (MMA) has created a dynamic, hands-on approach to learning the theoretical and operational characteristics of a turbojet engine. Maine Maritime Academy is a fully accredited college of Engineering, Science and International Business located on the coast of Maine and has over 850 undergraduate students. The majority of the students are enrolled in one of five majors offered at the college in the Engineering Department. MMA already utilizes gas turbines and steam plants as part of the core engineering training with fully operational turbines and steam plant laboratories. As background, this paper will overview the unique hands-on nature of the engineering programs offered at the institution with a focus of implementation of a micro gas turbine trainer into all engineering majors taught at the college. The training demonstrates the effectiveness of a working gas turbine to translate theory into practical applications and real world conditions found in the operation of a combustion turbine. This paper presents the efforts of developing a combined cycle power plant for training engineers in the operation and performance of such a plant. Combined cycle power plants are common in the power industry due to their high thermal efficiencies. As gas turbines/electric power plants become implemented into marine applications, it is expected that combined cycle plants will follow. Maine Maritime Academy has a focus on training engineers for the marine and stationary power industry. The trainer described in this paper is intended to prepare engineers in the design and operation of this type of plant, as well as serve as a research platform for operational and technical study in plant performance. This work describes efforts to combine these laboratory resources into an operating combined cycle plant. Specifically, we present efforts to integrate a commercially available, 65 kW gas turbine generator system with our existing steam plant. The paper reviews the design and analysis of the system to produce a 78 kW power plant that approaches 35% thermal efficiency. The functional operation of the plant as a trainer is presented as the plant is designed to operate with the same basic functionality and control as a larger commercial plant.


Sign in / Sign up

Export Citation Format

Share Document