Applying Combined Pinch and Exergy Analysis to Closed-Cycle Gas Turbine System Design

1995 ◽  
Vol 117 (1) ◽  
pp. 47-52 ◽  
Author(s):  
V. R. Dhole ◽  
J. P. Zheng

Pinch technology has developed into a powerful tool for thermodynamic analysis of chemical processes and associated utilities, resulting in significant energy savings. Conventional pinch analysis identifies the most economical energy consumption in terms of heat loads and provides practical design guidelines to achieve this. However, in analyzing systems involving heat and power, for example, steam and gas turbines, etc., pure heat load analysis is insufficient. Exergy analysis, on the other hand, provides a tool for heat and power analysis, although at times it does not provide clear practical design guidelines. An appropriate combination of pinch and exergy analysis can provide practical methodology for the analysis of heat and power systems. The methodology has been successfully applied to refrigeration systems. This paper introduces the application of a combined pinch and exergy approach to commercial power plants with a demonstration example of a closed-cycle gas turbine (CCGT) system. Efficiency improvement of about 0.82 percent (50.2 to 51.02 percent) can be obtained by application of the new approach. More importantly, the approach can be used as an analysis and screening tool for the various design improvements and is generally applicable to any commercial power generation facility.

Author(s):  
Adel Sefidi ◽  
Ardeshir Arash

Pinch technology has developed for thermodynamic analysis of chemical processes. This technology targets the most possible modification prior to detailed design. Pinch technology it is not sufficient in analyzing systems involving beat and power such as power plants. Exergy analysis, on the other hand, provides a powerful tool for heat and power analysis, although at times it does not provide clear practical design guideline. To prevailing over the weaknesses of both analysis, in obtaining a practical design guideline for the analysis of heat and power systems, combined pinch and exergy analysis (CPEA) is developed. This paper introduces the application of CPEA to advanced steam power plant. The paper presents a new methodology in optimization of steam extractions mass flowrate from multiple pressure levels of steam turbine with using CPEA. Efficiency improvement about 0.34% can be obtained by application of new approach and likewise, hot and cold utilities of cycle can be decreased.


1979 ◽  
Author(s):  
H. C. Daudet ◽  
C. A. Kinney

This paper presents a discussion of the significant results of a study program conducted for the Department of Energy to evaluate the potential for closed cycle gas turbines and the associated combustion heater systems for use in coal fired public utility power plants. Two specific problem areas were addressed: (a) the identification and analysis of system concepts which offer high overall plant efficiency consistent with low cost of electricity (COE) from coal-pile-to-bus-bar, and (b) the identification and conceptual design of combustor/heat exchanger concepts compatible for use as the cycle gas primary heater for those plant systems. The study guidelines were based directly upon the ground rules established for the ECAS studies to facilitate comparison of study results. Included is a discussion of a unique computer model approach to accomplish the system analysis and parametric studies performed to evaluate entire closed cycle gas turbine utility power plants with and without Rankine bottoming cycles. Both atmospheric fluidized bed and radiant/convective combustor /heat exchanger systems were addressed. Each incorporated metallic or ceramic heat exchanger technology. The work culminated in conceptual designs of complete coal fired, closed cycle gas turbine power plants. Critical component technology assessment and cost and performance estimates for the plants are also discussed.


Author(s):  
G. E. Provenzale

The Closed Cycle Gas Turbine (CCGT) offers potential savings in operating costs due to high system efficiency and the ability to direct fire coal. However, for the full potential of CCGT to be realized, more competitive cost information must be generated, correlated, and compared with conventional steam power systems. Current development programs are intended to resolve many of the remaining uncertainties in design, performance, and cost by detailed examination and testing of critical components of CCGT coal-fired power systems. This paper reviews current technology developments and economic considerations of the closed cycle gas turbine burning dirty fuels versus conventional steam power systems.


Author(s):  
F. L. Robson ◽  
D. J. Seery

The Department of Energy’s Federal Energy Technology Center (FETC) is sponsoring the Combustion 2000 Program aimed at introducing clean and more efficient advanced technology coal-based power systems in the early 21st century. As part of this program, the United Technologies Research Center has assembled a seven member team to identify and develop the technology for a High Performance Power Systems (HIPPS) that will provide in the near term, 47% efficiency (HHV), and meet emission goals only one-tenth of current New Source Performance Standards for coal-fired power plants. In addition, the team is identifying advanced technologies that could result in HIPPS with efficiencies approaching 55% (HHV). The HIPPS is a combined cycle that uses a coal-fired High Temperature Advanced Furnace (HITAF) to preheat compressor discharge air in both convective and radiant heaters. The heated air is then sent to the gas turbine where additional fuel, either natural gas or distillate, is burned to raise the temperature to the levels of modern gas turbines. Steam is raised in the HITAF and in a Heat Recovery Steam Generator for the steam bottoming cycle. With state-of-the-art frame type gas turbines, the efficiency goal of 47% is met in a system with more than two-thirds of the heat input furnished by coal. By using advanced aeroderivative engine technology, HIPPS in combined-cycle and Humid Air Turbine (HAT) cycle configurations could result in efficiencies of over 50% and could approach 55%. The following paper contains descriptions of the HIPPS concept including the HITAF and heat exchangers, and of the various gas turbine configurations. Projections of HIPPS performance, emissions including significant reduction in greenhouse gases are given. Application of HIPPS to repowering is discussed.


Author(s):  
V.D. Molyakov ◽  
B.A. Kunikeev ◽  
N.I. Troitskiy

Closed-cycle gas turbine units can be used as power plants for advanced nuclear power stations, spacecraft, ground, surface and underwater vehicles. The purpose and power capacity of closed gas turbine units (CGTU) determine their specific design schemes, taking into account efficient operation of the units both in the nominal (design) mode and in partial power modes. Control methods of both closed and open gas turbine units depend on the scheme and design of the installation but the former differ from the latter mainly in their ability to change gas pressure at the entrance to the low-pressure compressor. This pressure can be changed by controlling the mass circulating in the CGTU circuit, adding or releasing part of the working fluid from the closed system as well as by internal bypassing of the working fluid. At a constant circulating mass in the single-shaft CGTU, the temperature of the gas before the turbines and the shaft speed can be adjusted depending on the type of load. The rotational speed of the turbine shaft, blocked with the compressor, can be adjusted in specific ways, such as changing the cross sections of the flow of the impellers. At a constant mass of the working fluid, the pressure at the entrance to the low-pressure compressor varies depending on the control program. The efficiency of the CGTU in partial power modes depends on the installation scheme, control method and program. The most economical control method is changing the pressure in the circuit. Extraction of the working fluid into special receivers while maintaining the same temperature in all sections of the unit leads to a proportional decrease in the density of the working fluid in all sections and the preservation of gas-dynamic similarity in the nodes (compressors, turbines and pipelines). Specific heat flux rates, and therefore, temperatures change slightly in heat exchangers. As the density decreases, heat fluxes change, as the heat transfer coefficient decreases more slowly than the density of the working fluid. With a decrease in power, this leads to a slight increase in the degree of regeneration and cooling in the heat exchangers. The underestimation of these phenomena in the calculations can be compensated by the underestimation of the growth of losses in partial power modes.


1970 ◽  
Author(s):  
W. Endres

A short review of the state-of-the-art of the closed cycle gas turbine technology is given and the future requirements for large helium turbines are described. The necessary development of components and turbine sizes is outlined. In a second part of the paper the configuration and layout of power plants with gas turbines are discussed.


2004 ◽  
Vol 126 (4) ◽  
pp. 816-822 ◽  
Author(s):  
Tadeusz Chmielniak ◽  
Gerard Kosman ◽  
Wojciech Kosman

The application of a gas turbine generally allows to increase the number of possible configurations of cogenerated heat and electrical power systems, which became a significant substitute for classic, coal-fired power plants. They are characterized by better thermodynamical, economical, ecological, and operating indexes. Gas turbine units are also the best option for the modernization of existing power plants. This paper discusses the effectiveness of various technological configurations with gas turbines, which are to be applied during modernization projects of already existing conventional combined heat and power plants. In the analysis enthalpy and entropy methods were applied. Algorithms of the entropy method allow to determine the entropy generation in each section of a combined heat and power (CHP) plant. Several criteria were taken into consideration while analyzing the effectiveness of technological cycle configurations with gas turbines. These include the energy effectiveness, the efficiency of the HRSG and the steam cycle, the efficiency of the whole thermal electric power station, the exergetic efficiency of the HRSG and the steam cycle, and the fuel efficiency index. It was assumed that gas turbines operate under their nominal conditions. The composite curves were also taken into consideration while choosing the type of the turbine. The modernization project tends not to eliminate those existing power plant sections (machines and equipment), which are able to operate further. The project suggests that those units should remain in the system, which satisfy the applied durability criterion. The last phase of the optimization project focuses on the sensibility verification of several steam-gas CHP plant parameters and their influence on the whole system.


Author(s):  
R. Tom Sawyer

The are two types of gas turbines. The open cycle is very well known as for example the JET. The closed cycle in the U.S.A. is just starting to be well known. In Europe the closed cycle gas turbine has been used in power plants, especially in Germany and have been very efficient burning coal. I am going to concentrate on the CCGT - Closed Cycle Gas Turbine as it is the most efficient type of turbine. First I will give a brief report written by Dr. Curt Keller. Then the main part of this paper will give more details about the closed cycle gas turbine (CCGT) using various fuels.


1978 ◽  
Author(s):  
H. U. Frutschi

Spontaneous response to power demand is essential during autonomous operation of power plants. In this case, only control principles with negligible negative momentary effects can be employed. A further requirement is a good part-load efficiency. After a brief description of the most important control methods of closed-cycle gas turbines, the dynamic behavior of the cycle during gas injection for positive load changes is analyzed. A very attractive method is inter-compressor injection from an intermediate pressure reservoir which can be charged from the compressor exit during load reduction. Based on these results, a control system for closed-cycle gas turbine employing gas injection is presented.


Author(s):  
T. Schobeiri ◽  
H. Haselbacher

The design of modern gas turbines requires the predetermination of their dynamic behavior during transients of various kinds. This is especially true for air storage and closed cycle gas turbine plants. The present paper is an introduction to a computatational method which permits an accurate simulation of any gas turbine system. Starting with the conservation equations of aero/thermodynamics, the modular computer program COTRAN was developed, which calculates the transient behavior of individual components as well as of entire gas turbine systems. For example, it contains modules for compressors, turbines, combustion chambers, pipes etc. To demonstrate the effectiveness of COTRAN the shut-down tests of the air storage gas turbine plant Huntorf were simulated and results compared with experimental data. The agreement was found to be very good.


Sign in / Sign up

Export Citation Format

Share Document