A Fresh Insight Into the Microcantilever-Sample Interaction Problem in Non-Contact Atomic Force Microscopy

2004 ◽  
Vol 126 (2) ◽  
pp. 327-335 ◽  
Author(s):  
Nader Jalili ◽  
Mohsen Dadfarnia ◽  
Darren M. Dawson

The atomic force microscope (AFM) system has evolved into a useful tool for direct measurements of intermolecular forces with atomic-resolution characterization that can be employed in a broad spectrum of applications. The non-contact AFM offers unique advantages over other contemporary scanning probe techniques such as contact AFM and scanning tunneling microscopy, especially when utilized for reliable measurements of soft samples (e.g., biological species). Current AFM imaging techniques are often based on a lumped-parameters model and ordinary differential equation (ODE) representation of the micro-cantilevers coupled with an adhoc method for atomic interaction force estimation (especially in non-contact mode). Since the magnitude of the interaction force lies within the range of nano-Newtons to pica-Newtons, precise estimation of the atomic force is crucial for accurate topographical imaging. In contrast to the previously utilized lumped modeling methods, this paper aims at improving current AFM measurement technique through developing a general distributed-parameters base modeling approach that reveals greater insight into the fundamental characteristics of the microcantilever-sample interaction. For this, the governing equations of motion are derived in the global coordinates via the Hamilton’s Extended Principle. An interaction force identification scheme is then designed based on the original infinite dimensional distributed-parameters system which, in turn, reveals the unmeasurable distance between AFM tip and sample surface. Numerical simulations are provided to support these claims.

Author(s):  
Nader Jalili ◽  
Mohsen Dadfarnia ◽  
Darren M. Dawson

The atomic force microscope (AFM) system has evolved into a useful tool for direct measurements of intermolecular forces with atomic-resolution characterization that can be employed in a broad spectrum of applications such as electronics, semi-conductors, materials, manufacturing, polymers, biological analysis, and biomaterials. The noncontact AFM offers unique advantages over other contemporary scanning probe techniques such as contact AFM and scanning tunneling microscopy. Current AFM imaging techniques are often based on a lumped-parameters model and ordinary differential equation (ODE) representation of the micro-cantilevers coupled with an ad-hoc method for atomic interaction force estimation (especially in non-contact mode). Since the magnitude of the interaction force lies within the range of nano-Newtons to pica-Newtons, precise estimation of the atomic force is crucial for accurate topographical imaging. In contrast to the previously utilized lumped modeling methods, this paper aims at improving current AFM measurement technique through developing a general distributed-parameters base modeling approach that reveals greater insight into the fundamental characteristics of the microcantilever-sample interaction. For this, the governing equations of motion are derived in the global coordinates via the Hamilton’s Extended Principle. By properly selecting a set of general coordinates, the resulting non-homogenous boundary value problem is then converted to a homogenous one, and hence, analytically solvable. The AFM controller can then be designed based on the original infinite dimensional distributed-parameters system which, in turn, removes some of the disadvantages associated with the truncated-model base controllers such as control spillovers, residual oscillations and increased order of the control. Numerical simulations are provided to support these claims.


Author(s):  
Karthik Laxminarayana ◽  
Nader Jalili

The atomic force microscope (AFM) system has evolved into a useful tool for direct measurements of microstructural parameters and intermolecular forces at nanoscale level with atomic-resolution characterization. Typically, these microcantilever systems are operated in three open-loop modes; non-contact mode, contact mode, and tapping mode. In order to probe electric, magnetic, and/or atomic forces of a selected sample, the non-contact mode is utilized by moving the cantilever slightly away from the sample surface and oscillating the cantilever at or near its natural resonance frequency. Alternatively, the contact mode acquires sample attributes by monitoring interaction forces while the cantilever tip remains in contact with the target sample. The tapping mode of operation combines qualities of both the contact and non-contact modes by gleaning sample data and oscillating the cantilever tip at or near its natural resonance frequency while allowing the cantilever tip to impact the target sample for a minimal amount of time. Recent research on AFM systems has focused on many fabrication and manufacturing processes at molecular levels due to its tremendous surface microscopic capabilities. This paper provides a review of such recent developments in AFM imaging systems with emphasis on operational modes, microcantilever dynamic modeling and control. Due to the important contributions of AFM systems to manufacturing, this paper also provides a comprehensive review of recent applications of different AFM systems in these important areas.


Author(s):  
J. H. Hoh ◽  
P. E. Hillner ◽  
P. K. Hansma

The atomic-force microscope (AFM) can measure forces between atoms and molecules with a sensitivity of <10−12 N. By coating the AFM tip with specific molecules the types of interactions that can be examined will be greatly extended. Recently tips with biotin attached have been used to probe surfaces coated with avidin or streptavidin, to measure the respective bond strength.We have developed a novel approach to measuring intermolecular forces with the AFM that employs paramagnetic beads coated with one of the molecules to be studied. Beads are incubated with a surface coated with the second molecule, and allowed to form a specific bond. A small magnet glued to an AFM cantilever is then advanced toward the bead until the bond with between the two molecules breaks and the bead “jumps” to the magnet. The deflection of the cantilever provides a direct readout of the interaction force at the “jump,” and thereby a measure of the bond strength.


2002 ◽  
Vol 09 (03n04) ◽  
pp. 1565-1593 ◽  
Author(s):  
RUUD M. TROMP ◽  
JAMES B. HANNON

Nucleation and growth are often discussed in terms of kinetics, i.e. the adsorption of atoms from the gas phase or a solution onto a surface, the diffusion of these atoms on that surface, and their attachment to a growing nucleus, island or layer. In recent years, scanning tunneling and atomic force microscopy studies have tremendously improved our understanding of such kinetic processes for a wide range of materials. At relatively low temperatures where diffusion is slow, and where typical deposition rates result in adatom concentrations that far exceed the equilibrium concentration of adatoms on the surface, growth is indeed controlled by irreversible atomic scale kinetics. But at higher temperatures this is not necessarily the case. Indeed, the equilibrium concentration of adatoms can be so high that it is only slightly increased by an external flux. Diffusion can be so fast that spatially separated regions on the surface interact on a time scale that is not slow relative to the growth process. In such cases reversible, collective phenomena are more important than individual atomic events, and thermodynamics is more important than kinetics. In this paper we examine a number of cases related to nucleation and growth on surfaces, where a deep and quantitative insight into the growth process can be obtained by detailed consideration of the thermodynamics involved. It is our hope that this paper will help to bring about a balanced understanding of these phenomena, where kinetics and thermodynamics are two poles on a continuum with an importance that depends on the particulars of each experiment.


Author(s):  
Sohrab Eslami ◽  
Nader Jalili ◽  
Ali Passian ◽  
Laurene Tetard ◽  
Thomas Thundat

This paper presents an Euler-Bernoulli microcantilever beam model utilized in non-contact Atomic Force Microscopy (AFM) systems. A distributed-parameters modeling is considered for such system. The motions of the microcantilever are studied in a general Cartesian coordinate with an excitation at the base such that beam end with a tip mass is subject to a general force. This general force comprising of two attractive and repulsive parts with high power terms is taken as the atomic intermolecular one which has a relation with the displacement between the tip mass and the surface such that the total general force will be in the form of an implicit nonlinear equation. It is most desired to observe the effects of the base excitation in high frequencies on the tip van der Waals interaction force. Hence, the general force will produce a peak in the FFT spectrum corresponding to the frequency of the base.


Author(s):  
R.T. Chen ◽  
M.G. Jamieson ◽  
R. Callahan

“Row lamellar” structures have previously been observed when highly crystalline polymers are melt-extruded and recrystallized under high stress. With annealing to perfect the stacked lamellar superstructure and subsequent stretching in the machine (extrusion) direction, slit-like micropores form between the stacked lamellae. This process has been adopted to produce polymeric membranes on a commercial scale with controlled microporous structures. In order to produce the desired pore morphology, row lamellar structures must be established in the membrane precursors, i.e., as-extruded and annealed polymer films or hollow fibers. Due to the lack of pronounced surface topography, the lamellar structures have typically been investigated by replica-TEM, an indirect and time consuming procedure. Recently, with the availability of high resolution imaging techniques such as scanning tunneling microscopy (STM) and field emission scanning electron microscopy (FESEM), the microporous structures on the membrane surface as well as lamellar structures in the precursors can be directly examined.The materials investigated are Celgard® polyethylene (PE) flat sheet membranes and their film precursors, both as-extruded and annealed, made at different extrusion rates (E.R.).


Author(s):  
CE Bracker ◽  
P. K. Hansma

A new family of scanning probe microscopes has emerged that is opening new horizons for investigating the fine structure of matter. The earliest and best known of these instruments is the scanning tunneling microscope (STM). First published in 1982, the STM earned the 1986 Nobel Prize in Physics for two of its inventors, G. Binnig and H. Rohrer. They shared the prize with E. Ruska for his work that had led to the development of the transmission electron microscope half a century earlier. It seems appropriate that the award embodied this particular blend of the old and the new because it demonstrated to the world a long overdue respect for the enormous contributions electron microscopy has made to the understanding of matter, and at the same time it signalled the dawn of a new age in microscopy. What we are seeing is a revolution in microscopy and a redefinition of the concept of a microscope.Several kinds of scanning probe microscopes now exist, and the number is increasing. What they share in common is a small probe that is scanned over the surface of a specimen and measures a physical property on a very small scale, at or near the surface. Scanning probes can measure temperature, magnetic fields, tunneling currents, voltage, force, and ion currents, among others.


Author(s):  
Jean-Paul Revel

The last few years have been marked by a series of remarkable developments in microscopy. Perhaps the most amazing of these is the growth of microscopies which use devices where the place of the lens has been taken by probes, which record information about the sample and display it in a spatial from the point of view of the context. From the point of view of the biologist one of the most promising of these microscopies without lenses is the scanned force microscope, aka atomic force microscope.This instrument was invented by Binnig, Quate and Gerber and is a close relative of the scanning tunneling microscope. Today's AFMs consist of a cantilever which bears a sharp point at its end. Often this is a silicon nitride pyramid, but there are many variations, the object of which is to make the tip sharper. A laser beam is directed at the back of the cantilever and is reflected into a split, or quadrant photodiode.


Author(s):  
H. Kinney ◽  
M.L. Occelli ◽  
S.A.C. Gould

For this study we have used a contact mode atomic force microscope (AFM) to study to topography of fluidized cracking catalysts (FCC), before and after contamination with 5% vanadium. We selected the AFM because of its ability to well characterize the surface roughness of materials down to the atomic level. It is believed that the cracking in the FCCs occurs mainly on the catalysts top 10-15 μm suggesting that the surface corrugation could play a key role in the FCCs microactivity properties. To test this hypothesis, we chose vanadium as a contaminate because this metal is capable of irreversibly destroying the FCC crystallinity as well as it microporous structure. In addition, we wanted to examine the extent to which steaming affects the vanadium contaminated FCC. Using the AFM, we measured the surface roughness of FCCs, before and after contamination and after steaming.We obtained our FCC (GRZ-1) from Davison. The FCC is generated so that it contains and estimated 35% rare earth exchaged zeolite Y, 50% kaolin and 15% binder.


Sign in / Sign up

Export Citation Format

Share Document