Tetrapolar Measurement of Electrical Conductivity and Thickness of Articular Cartilage

2004 ◽  
Vol 126 (4) ◽  
pp. 475-484 ◽  
Author(s):  
J. S. Binette ◽  
M. Garon ◽  
P. Savard ◽  
M. D. McKee ◽  
M. D. Buschmann

A tetrapolar method to measure electrical conductivity of cartilage and bone, and to estimate the thickness of articular cartilage attached to bone, was developed. We determined the electrical conductivity of humeral head bovine articular cartilage and subchondral bone from a 1- to 2-year-old steer to be 1.14±0.11S/m(mean±sd,n=11) and 0.306±0.034S/m,(mean±sd,n=3), respectively. For a 4-year-old cow, articular cartilage and subchondral bone electrical conductivity were 0.88±0.08S/m(mean±sd,n=9) and 0.179±0.046S/m(mean±sd,n=3), respectively. Measurements on slices of cartilage taken from different distances from the articular surface of the steer did not reveal significant depth-dependence of electrical conductivity. We were able to estimate the thickness of articular cartilage with reasonable precision (<20% error) by injecting current from multiple electrode pairs with different inter-electrode distances. Requirements for the precision of this method to measure cartilage thickness include the presence of a distinct layer of calcified cartilage or bone with a much lower electrical conductivity than that of uncalcified articular cartilage, and the use of inter-electrode distances of the current injecting electrodes that are on the order of the cartilage thickness. These or similar methods present an attractive approach to the non-destructive determination of cartilage thickness, a parameter that is required in order to estimate functional properties of cartilage attached to bone, and evaluate the need for therapeutic interventions in arthritis.

2012 ◽  
Vol 4 (4) ◽  
pp. 249-258 ◽  
Author(s):  
Steven R. Goldring

The articular cartilage and the subchondral bone form a biocomposite that is uniquely adapted to the transfer of loads across the diarthrodial joint. During the evolution of the osteoarthritic process biomechanical and biological processes result in alterations in the composition, structure and functional properties of these tissues. Given the intimate contact between the cartilage and bone, alterations of either tissue will modulate the properties and function of the other joint component. The changes in periarticular bone tend to occur very early in the development of OA. Although chondrocytes also have the capacity to modulate their functional state in response to loading, the capacity of these cells to repair and modify their surrounding extracellular matrix is relatively limited in comparison to the adjacent subchondral bone. This differential adaptive capacity likely underlies the more rapid appearance of detectable skeletal changes in OA in comparison to the articular cartilage. The OA changes in periarticular bone include increases in subchondral cortical bone thickness, gradual decreases in subchondral trabeular bone mass, formation of marginal joint osteophytes, development of bone cysts and advancement of the zone of calcified cartilage between the articular cartilage and subchondral bone. The expansion of the zone of calcified cartilage contributes to overall thinning of the articular cartilage. The mechanisms involved in this process include the release of soluble mediators from chondrocytes in the deep zones of the articular cartilage and/or the influences of microcracks that have initiated focal remodeling in the calcified cartilage and subchondral bone in an attempt to repair the microdamage. There is the need for further studies to define the pathophysiological mechanisms involved in the interaction between subchondral bone and articular cartilage and for applying this information to the development of therapeutic interventions to improve the outcomes in patients with OA.


2006 ◽  
Vol 19 (03) ◽  
pp. 142-146 ◽  
Author(s):  
D. D. Frisbie ◽  
M. W. Cross ◽  
C. W. McIlwraith

SummaryHistological measurements of the thickness of non-calcified and calcified cartilage, as well as the subchondral bone plate in five locations on the femoral trochlea and medial femoral condyles of species were used in preclinical studies of articular cartilage and compared to those of the human knee. Cadaver specimens were obtained of six human knees, as well as six equine, six goat, six dog, six sheep and six rabbit stifle joints (the animal equivalent of the human knee). Specimens were taken from the lateral trochlear ridge, medial trochlear ridge and medial femoral condyle. After histopathological processing, the thickness of non-calcified and calcified cartilage layers, as well as the subchondral bone plate, was measured. Average articular cartilage thickness over five locations were 2.2–2.5 mm for human, 0.3 mm for rabbit, 0.4–0.5 mm for sheep, 0.6–1.3 mm for dog, 0.7–1.5 mm for goat and 1.5–2 mm for horse. The horse provides the closest approximation to humans in terms of articular cartilage thickness, and this approximation is considered relevant in pre-clinical studies of cartilage healing.


2003 ◽  
Vol 93 (2) ◽  
pp. 104-110 ◽  
Author(s):  
Doreen Raudenbush ◽  
Dale R. Sumner ◽  
Parimal M. Panchal ◽  
Carol Muehleman

Osteoarthritis is a disease of synovial joints that involves articular cartilage breakdown with accompanying bone changes, including subchondral sclerosis and osteophytosis. However, conflicting data have been reported concerning the cause-and-effect relationship, if any, between these changes. The authors studied the subchondral plate (subchondral bone plus calcified cartilage) in relation to the degree of articular cartilage degeneration on the distal articular surface of the first metatarsal, a region prone to osteoarthritis. No correlation was found between subchondral plate thickness or porosity and the degree of cartilage degeneration in the study sample of 96 metatarsals. Owing to the suggestion that initiation of cartilage fibrillation may be a result of steep stiffness gradients in the subchondral bone, the ratios of subchondral plate thickness in adjacent regions of the metatarsal head were examined in detail, but no correlation was found with subchondral degeneration. Thus increases in subchondral bone thickness are not associated with increases in cartilage degeneration on the first metatarsal, which may imply that subchondral bone changes do not cause osteoarthritis in this joint. (J Am Podiatr Med Assoc 93(2): 104-110, 2003)


2020 ◽  
Author(s):  
CR Coveney ◽  
L Zhu ◽  
J Miotla-Zarebska ◽  
B Stott ◽  
I Parisi ◽  
...  

AbstractMechanical forces are known to drive cellular signalling programmes in cartilage development, health, and disease. Proteins of the primary cilium, implicated in mechanoregulation, control cartilage formation during skeletal development, but their role in post-natal cartilage is unknown. Ift88fl/fl and AggrecanCreERT2 mice were crossed to create a cartilage specific inducible knockout mouse AggrecanCreERT2;Ift88fl/fl. Tibial articular cartilage thickness was assessed, through adolescence and adulthood, by histomorphometry and integrity by OARSI score. In situ cell biology was investigated by immunohistochemistry (IHC) and qPCR of micro-dissected cartilage. OA was induced by destabilisation of the medial meniscus (DMM). Some mice were provided with exercise wheels in their cage. Deletion of IFT88 resulted in a reduction in medial articular cartilage thickness (atrophy) during adolescence from 102.57μm, 95% CI [94.30, 119.80] in control (Ift88fl/fl) to 87.36μm 95% CI [81.35, 90.97] in AggrecanCreERT2;Ift88fl/fl by 8-weeks p<0.01, and adulthood (104.00μm, 95% CI [100.30, 110.50] in Ift88fl/fl to 89.42μm 95% CI [84.00, 93.49] in AggrecanCreERT2;Ift88fl/fl, 34-weeks, p<0.0001) through a reduction in calcified cartilage. Thinning in adulthood was associated with spontaneous cartilage degradation. Following DMM, AggrecanCreERT2;Ift88fl/fl mice had increased OA (OARSI scores at 12 weeks Ift88fl/fl = 22.08 +/− 9.30, and AggrecanCreERT2;Ift88fl/fl = 29.83 +/− 7.69). Atrophy was not associated with aggrecanase-mediated destruction or chondrocyte hypertrophy. Ift88 expression positively correlated with Tcf7l2 and connective tissue growth factor. Cartilage thickness was restored in AggrecanCreERT2;Ift88fl/fl by voluntary wheel exercise. Our results demonstrate that ciliary IFT88 regulates cartilage thickness and is chondroprotective, potentially through modulating mechanotransduction pathways in articular chondrocytes.


2005 ◽  
Vol 53 (9) ◽  
pp. 1109-1119 ◽  
Author(s):  
Kyle D. Jadin ◽  
Benjamin L. Wong ◽  
Won C. Bae ◽  
Kelvin W. Li ◽  
Amanda K. Williamson ◽  
...  

Articular cartilage is a heterogeneous tissue, with cell density and organization varying with depth from the surface. The objectives of the present study were to establish a method for localizing individual cells in three-dimensional (3D) images of cartilage and quantifying depth-associated variation in cellularity and cell organization at different stages of growth. Accuracy of nucleus localization was high, with 99% sensitivity relative to manual localization. Cellularity (million cells per cm3) decreased from 290, 310, and 150 near the articular surface in fetal, calf, and adult samples, respectively, to 120, 110, and 50 at a depth of 1.0 mm. The distance/angle to the nearest neighboring cell was 7.9 μm/31°, 7.1 μm/31°, and 9.1 μm/31° for cells at the articular surface of fetal, calf, and adult samples, respectively, and increased/decreased to 11.6 μm/31°, 12.0 μm/30°, and 19.2 μm/25° at a depth of 0.7 mm. The methodologies described here may be useful for analyzing the 3D cellular organization of cartilage during growth, maturation, aging, degeneration, and regeneration.


2016 ◽  
Vol 23 (4) ◽  
pp. 40-43
Author(s):  
E. L Matveeva ◽  
A. G Gasanova ◽  
O. K Chegurov

The purpose of the work was to determine the concentrations of mineral elements in subchondral bone and synovial fluid of patients with degenerative dystrophic knee joint diseases accompanied by articular surface defects. Subchondral bone and synovial fluid were used as a study material. Analysis of mineral content indices included the determination of calcium, phosphate, magnesium and chlorides concentrations by spectrophotometry. It was shown that the indices of basic electrolytes, i.e. of calcium and phosphate ions, in bone and synovial fluid did not correlate with each other and changed in different directions. Calcium content decreased in the bone while phosphate ions - in synovial fluid.


Author(s):  
Seyed Shayan Sajjadinia ◽  
Mohammad Haghpanahi ◽  
Mohammad Razi

It has been experimentally proposed that the discrete regions of articular cartilage, along with different subchondral bone tissues, known as the bone-cartilage unit, are biomechanically altered during osteoarthritis degeneration. However, a computational framework capturing all of the dominant changes in the multiphasic parameters has not yet been developed. This article proposes a new finite element model of the bone-cartilage unit by combining several validated, nonlinear, depth-dependent, fibril-reinforced, and swelling models, which can computationally simulate the variations in the dominant parameters during osteoarthritis degeneration by indentation and unconfined compression tests. The mentioned dominant parameters include the proteoglycan depletion, collagen fibrillar softening, permeability, and fluid fraction increase for approximately non-advanced osteoarthritis. The results depict the importance of subchondral bone tissues in fluid distribution within the bone-cartilage units by decreasing the fluid permeation and pressure (up to a maximum of 100 kPa) during osteoarthritis, supporting the notion that subchondral bones might play a role in the pathogenesis of osteoarthritis. Furthermore, the osteoarthritis composition-based studies shed light on the significant biomechanical role of the calcified cartilage, which experienced a maximum change of 70 kPa in stress, together with relative load contributions of articular cartilage constituents during osteoarthritis, in which the osmotic pressure bore around 70% of the loads after degeneration. To conclude, the new insights provided by the results reveal the significance of the multiphasic osteoarthritis simulation and demonstrate the functionality of the proposed bone-cartilage unit model.


Cartilage ◽  
2019 ◽  
pp. 194760351986024
Author(s):  
Paul Cernohorsky ◽  
Simon D. Strackee ◽  
Geert J. Streekstra ◽  
Jeroen P. van den Wijngaard ◽  
Jos A. E. Spaan ◽  
...  

Objective Accurate, high-resolution imaging of articular cartilage thickness is an important clinical challenge in patients with osteoarthritis, especially in small joints. In this study, computed tomography (CT) mediated catheter-based optical coherence tomography (OCT) was utilized to create a digital reconstruction of the articular surface of the trapeziometacarpal (TMC) joint and to assess cartilage thickness in comparison to cryomicrotome data. Design Using needle-based introduction of the OCT probe, the articular surface of the TMC joint of 5 cadaver wrists was scanned in different probe positions with matching CT scans to record the intraarticular probe trajectory. Subsequently and based on the acquired CT data, 3-dimensional realignment of the OCT data to the curved intraarticular trajectory was performed for all probe positions. The scanned TMC joints were processed using a cryomicrotome imaging system. Finally, cartilage thickness measurements between OCT and cryomicrotome data were compared. Results Successful visualization of TMC articular cartilage was performed using OCT. The CT-mediated registration yielded a digital reconstruction of the articular surface on which thickness measurements could be performed. A near-perfect agreement between OCT and cryomicrotome thickness measurements was found ( r2 = 0.989). Conclusion The proposed approach enables 3D reconstruction of the TMC articular surface with subsequent accurate cartilage thickness measurements, encouraging the development of intraarticular cartilage OCT for future (clinical) application.


Sign in / Sign up

Export Citation Format

Share Document