Parametric Performance of Combined-Cogeneration Power Plants With Various Power and Efficiency Enhancements

2005 ◽  
Vol 127 (1) ◽  
pp. 65-72 ◽  
Author(s):  
T. Korakianitis ◽  
J. Grantstrom ◽  
P. Wassingbo ◽  
Aristide F. Massardo

The design-point performance characteristics of a wide variety of combined-cogeneration power plants, with different amounts of supplementary firing (or no supplementary firing), different amounts of steam injection (or no steam injection), different amounts of exhaust gas condensation, etc., without limiting these parameters to present-day limits are investigated. A representative power plant with appropriate components for these plant enhancements is developed. A computer program is used to evaluate the performance of various power plants using standard inputs for component efficiencies, and the design-point performance of these plants is computed. The results are presented as thermal efficiency, specific power, effectiveness, and specific rate of energy in district heating. The performance of the simple-cycle gas turbine dominates the overall plant performance; the plant efficiency and power are mainly determined by turbine inlet temperature and compressor pressure ratio; increasing amounts of steam injection in the gas turbine increases the efficiency and power; increasing amounts of supplementary firing decreases the efficiency but increases the power; with sufficient amounts of supplementary firing and steam injection the exhaust-gas condensate is sufficient to make up for water lost in steam injection; and the steam-turbine power is a fraction (0.1 to 0.5) of the gas-turbine power output. Regions of “optimum” parameters for the power plant based on design-point power, hot-water demand, and efficiency are shown. A method for fuel-cost allocation between electricity and hot water is recommended.

Author(s):  
T. Korakianitis ◽  
J. Grantstrom ◽  
P. Wassingbo ◽  
A. F. Massardo

The design-point performance characteristics of a wide variety of combined-cogeneration power plants, with different amounts of supplementary firing (or no supplementary firing), different amounts of steam injection (or no steam injection), different amounts of exhaust gas condensation etc, without limiting these parameters to present-day limits are investigated. A representative power plant with appropriate components for these plant enhancements is developed. A computer program is used to evaluate the performance of various power plants using standard inputs for component efficiencies; and the design-point performance of these plants is computed. The results are presented as thermal efficiency, specific power, effectiveness, and specific rate of energy in district heating. The performance of the simple-cycle gas turbine dominates the overall plant performance; the plant efficiency and power are mainly determined by turbine inlet temperature and compressor pressure ratio; increasing amounts of steam injection in the gas turbine increases the efficiency and power; increasing amounts of supplementary firing decreases the efficiency but increases the power; with sufficient amounts of supplementary firing and steam injection the exhaust-gas condensate is sufficient to make up for water lost in steam injection; and the steam-turbine power is a fraction (0.1 to 0.5) of the gas-turbine power output. Regions of “optimum” parameters for the power plant based on design-point power, hot-water demand, and efficiency are shown. A method for fuel-cost allocation between electricity and hot water is recommended.


Author(s):  
Farshid Zabihian ◽  
Alan S. Fung ◽  
Fabio Schuler

Gas turbine-based power plants generate a significant portion of world’s electricity. This paper presents the modeling of a gas turbine-based cogeneration cycle. One of the reasons for the relatively low efficiency of a single gas turbine cycle is the waste of high-grade energy at its exhaust stream. In order to recover this wasted energy, steam and/or hot water can be cogenerated to improve the cycle efficiency. In this work, a cogeneration power plant is introduced to use this wasted energy to produce superheated steam for industrial processes. The cogeneration system model was developed based on the data from the Whitby cogeneration power plant in ASPEN PLUS®. The model was validated against the operational data of the existing power plant. The electrical and total (both electrical and thermal) efficiencies were around 40% and 70% (LHV), respectively. It is shown that cogenerating electricity and steam not only significantly improve the general efficiency of the cycle but it can also recover the output and efficiency losses of the gas turbine as a result of high ambient temperature by generating more superheated steam. Furthermore, this work shows that the model could capture the operation of the systems with an acceptable accuracy.


Author(s):  
Anoop Kumar Shukla ◽  
Onkar Singh

Gas/steam combined cycle power plants are extensively used for power generation across the world. Today’s power plant operators are persistently requesting enhancement in performance. As a result, the rigour of thermodynamic design and optimization has grown tremendously. To enhance the gas turbine thermal efficiency and specific power output, the research and development work has centered on improving firing temperature, cycle pressure ratio, adopting improved component design, cooling and combustion technologies, and advanced materials and employing integrated system (e.g. combined cycles, intercooling, recuperation, reheat, chemical recuperation). In this paper a study is conducted for combining three systems namely inlet fogging, steam injection in combustor, and film cooling of gas turbine blade for performance enhancement of gas/steam combined cycle power plant. The evaluation of the integrated effect of inlet fogging, steam injection and film cooling on the gas turbine cycle performance is undertaken here. Study involves thermodynamic modeling of gas/steam combined cycle system based on the first law of thermodynamics. The results obtained based on modeling have been presented and analyzed through graphical depiction of variations in efficiency, specific work output, cycle pressure ratio, inlet air temperature & density variation, turbine inlet temperature, specific fuel consumption etc.


Author(s):  
S. Can Gülen ◽  
Indrajit Mazumder

Cost of electricity (COE) is the most widely used metric to quantify the cost-performance trade-off involved in comparative analysis of competing electric power generation technologies. Unfortunately, the currently accepted formulation of COE is only applicable to comparisons of power plant options with the same annual electric generation (kilowatt-hours) and the same technology as defined by reliability, availability, and operability. Such a formulation does not introduce a big error into the COE analysis when the objective is simply to compare two or more base-loaded power plants of the same technology (e.g., natural gas fired gas turbine simple or combined cycle, coal fired conventional boiler steam turbine, etc.) and the same (or nearly the same) capacity. However, comparing even the same technology class power plants, especially highly flexible advanced gas turbine combined cycle units with cyclic duties, comprising a high number of daily starts and stops in addition to emissions-compliant low-load operation to accommodate the intermittent and uncertain load regimes of renewable power generation (mainly wind and solar) requires a significant overhaul of the basic COE formula. This paper develops an expanded COE formulation by incorporating crucial power plant operability and maintainability characteristics such as reliability, unrecoverable degradation, and maintenance factors as well as emissions into the mix. The core impact of duty cycle on the plant performance is handled via effective output and efficiency utilizing basic performance correction curves. The impact of plant start and load ramps on the effective performance parameters is included. Differences in reliability and total annual energy generation are handled via energy and capacity replacement terms. The resulting expanded formula, while rigorous in development and content, is still simple enough for most feasibility study type of applications. Sample calculations clearly reveal that inclusion (or omission) of one or more of these factors in the COE evaluation, however, can dramatically swing the answer from one extreme to the other in some cases.


2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Ioannis Roumeliotis ◽  
Christos Mourouzidis ◽  
Mirko Zafferetti ◽  
Deniz Unlu ◽  
Olivier Broca ◽  
...  

Abstract This paper assesses a parallel electric hybrid propulsion system utilizing simple and recuperated cycle gas turbine configurations. An adapted engine model capable to reproduce a turboshaft engine steady state and transient operation is built in Simcenter Amesim and used as a baseline for a recuperated engine. The transient operation of the recuperated engine is assessed for different values of heat exchanger effectiveness, quantifying the engine lag and the surge margin reduction which are results of the heat exchanger addition. An oil and gas (OAG) mission of a twin engine medium helicopter has been used for assessing the parallel hybrid configuration. The thermoelectric system brings a certain level of flexibility allowing for better engine utilization, thus first a hybrid configuration based on simple cycle gas turbine scaled down from the baseline engine is assessed in terms of performance and weight. Following the recuperated engine, thermoelectric power plant is assessed and the performance enhancement is compared against the simple cycle conventional and hybrid configurations. The results indicate that a recuperated gas turbine based thermo-electric power plant may provide significant fuel economy despite the increased weight. At the same time, the electric power train can be used to compensate for the reduced specific power and potentially for the throttle response change due to the heat exchanger addition.


Author(s):  
W. Peter Sarnacki ◽  
Richard Kimball ◽  
Barbara Fleck

The integration of micro turbine engines into the engineering programs offered at Maine Maritime Academy (MMA) has created a dynamic, hands-on approach to learning the theoretical and operational characteristics of a turbojet engine. Maine Maritime Academy is a fully accredited college of Engineering, Science and International Business located on the coast of Maine and has over 850 undergraduate students. The majority of the students are enrolled in one of five majors offered at the college in the Engineering Department. MMA already utilizes gas turbines and steam plants as part of the core engineering training with fully operational turbines and steam plant laboratories. As background, this paper will overview the unique hands-on nature of the engineering programs offered at the institution with a focus of implementation of a micro gas turbine trainer into all engineering majors taught at the college. The training demonstrates the effectiveness of a working gas turbine to translate theory into practical applications and real world conditions found in the operation of a combustion turbine. This paper presents the efforts of developing a combined cycle power plant for training engineers in the operation and performance of such a plant. Combined cycle power plants are common in the power industry due to their high thermal efficiencies. As gas turbines/electric power plants become implemented into marine applications, it is expected that combined cycle plants will follow. Maine Maritime Academy has a focus on training engineers for the marine and stationary power industry. The trainer described in this paper is intended to prepare engineers in the design and operation of this type of plant, as well as serve as a research platform for operational and technical study in plant performance. This work describes efforts to combine these laboratory resources into an operating combined cycle plant. Specifically, we present efforts to integrate a commercially available, 65 kW gas turbine generator system with our existing steam plant. The paper reviews the design and analysis of the system to produce a 78 kW power plant that approaches 35% thermal efficiency. The functional operation of the plant as a trainer is presented as the plant is designed to operate with the same basic functionality and control as a larger commercial plant.


Author(s):  
Nina Hepperle ◽  
Dirk Therkorn ◽  
Ernst Schneider ◽  
Stephan Staudacher

Recoverable and non-recoverable performance degradation has a significant impact on power plant revenues. A more in depth understanding and quantification of recoverable degradation enables operators to optimize plant operation. OEM degradation curves represent usually non-recoverable degradation, but actual power output and heat rate is affected by both, recoverable and non-recoverable degradation. This paper presents an empirical method to correct longterm performance data of gas turbine and combined cycle power plants for recoverable degradation. Performance degradation can be assessed with standard plant instrumentation data, which has to be systematically stored, reduced, corrected and analyzed. Recoverable degradation includes mainly compressor and air inlet filter fouling, but also instrumentation degradation such as condensate in pressure sensing lines, condenser or bypass valve leakages. The presented correction method includes corrections of these effects for gas turbine and water steam cycle components. Applying the corrections on longterm operating data enables staff to assess the non-recoverable performance degradation any time. It can also be used to predict recovery potential of maintenance activities like compressor washings, instrumentation calibration or leakage repair. The presented correction methods are validated with long-term performance data of several power plants. It is shown that the degradation rate is site-specific and influenced by boundary conditions, which have to be considered for degradation assessments.


Author(s):  
Rodney R. Gay

Traditionally optimization has been thought of as a technology to set power plant controllable parameters (i.e. gas turbine power levels, duct burner fuel flows, auxiliary boiler fuel flows or bypass/letdown flows) so as to maximize plant operations. However, there are additional applications of optimizer technology that may be even more beneficial than simply finding the best control settings for current operation. Most smaller, simpler power plants (such as a single gas turbine in combined cycle operation) perceive little need for on-line optimization, but in fact could benefit significantly from the application of optimizer technology. An optimizer must contain a mathematical model of the power plant performance and of the economic revenue and cost streams associated with the plant. This model can be exercised in the “what-if” mode to supply valuable on-line information to the plant operators. The following quantities can be calculated: Target Heat Rate Correction of Current Plant Operation to Guarantee Conditions Current Power Generation Capacity (Availability) Average Cost of a Megawatt Produced Cost of Last Megawatt Cost of Process Steam Produced Cost of Last Pound of Process Steam Heat Rate Increment Due to Load Change Prediction of Future Power Generation Capability (24 Hour Prediction) Prediction of Future Fuel Consumption (24 Hour Prediction) Impact of Equipment Operational Constraints Impact of Maintenance Actions Plant Budget Analysis Comparison of Various Operational Strategies Over Time Evaluation of Plant Upgrades The paper describes examples of optimizer applications other than the on-line computation of control setting that have provided benefit to plant operators. Actual plant data will be used to illustrate the examples.


Author(s):  
S. Can Gülen ◽  
Indrajit Mazumder

Cost of electricity (COE) is the most widely used metric to quantify the cost-performance trade-off involved in comparative analysis of competing electric power generation technologies. Unfortunately, the currently accepted formulation of COE is only applicable to comparisons of power plant options with the same annual electric generation (kilowatt-hours) and same technology as defined by reliability, availability and operability. Such a formulation does not introduce a big error into the COE analysis when the objective is simply to compare two or more baseloaded power plants of the same technology (e.g., natural gas fired gas turbine simple or combined cycle, coal fired conventional boiler steam turbine, etc.) and the same (or nearly the same) capacity. However, comparing even the same technology class power plants, especially highly flexible advanced gas turbine combined cycle units with cyclic duties, comprising a high number of daily starts and stops in addition to emissions-compliant low-load operation to accommodate the intermittent and uncertain load regimes of renewable power generation (mainly wind and solar) requires a significant overhaul of the basic COE formula. This paper develops an expanded COE formulation by incorporating crucial power plant operability and maintainability characteristics such as reliability, unrecoverable degradation, and maintenance factors as well as emissions into the mix. The core impact of duty cycle on the plant performance is handled via effective output and efficiency utilizing basic performance correction curves. The impact of plant start and load ramps on the effective performance parameters is included. Differences in reliability and total annual energy generation are handled via energy and capacity replacement terms. The resulting expanded formula, while rigorous in development and content, is still simple enough for most feasibility study type of applications. Sample calculations clearly reveal that inclusion (or omission) of one or more of these factors in the COE evaluation, however, can dramatically swing the answer from one extreme to the other in some cases.


2021 ◽  
Vol 22 ◽  
pp. 8
Author(s):  
Ali Akbar Golneshan ◽  
Hossain Nemati

It is required to sake methods to improve the power plant performance. Most of the proposed methods can be commenced only in the design stapes. However, the main question of this study is “What can we do to improve the performance of a running power plant?” The first answer to this question is that monitoring the site and periodic overhaul can keep a power plant in its acceptable condition. However, this answer is very qualitatively and needs more precise information like which parameters shall be monitored or which equipment needs more care in the overhaul. In this study, important parameters and the method of their calculations are introduced that must be monitored and compared. Six similar gas turbine power cycles were selected to be compared deeply during a day in this study. In this way, many data were collected every five minutes. Unlike most of the previous studies, this one concerns with maintenance policy and repair strategy. Results of this comparison lead to answer to these questions that which equipment needs special care? Finally, it was shown that in each unit, which equipment needs more attention and which one can be considered as a standard for the others.


Sign in / Sign up

Export Citation Format

Share Document