Stability Behavior of a Natural Circulation Loop with End Heat Exchangers

2005 ◽  
Vol 127 (7) ◽  
pp. 749-759 ◽  
Author(s):  
N. M. Rao ◽  
B. Maiti ◽  
P. K. Das

The present investigation describes the stability behavior of NCL with end heat exchangers. The one-dimensional transient conservation equations of the loop fluid and the two fluid streams of cold end and hot end heat exchangers are solved simultaneously using the finite element program. For the stability analysis the loop response is found for an imposed finite perturbation to the loop circulation rate. Though the stability may depend on the number of parameters, variation of two nondimensional parameters, namely Ch* and GrL, is studied. Selecting the specific combinations of the above two parameters three different cases of stability, namely, stable, neutrally stable, and unstable, are demonstrated. The stability behavior is scanned over a wide range of Ch* and GrL values and the stability envelope is also constructed.

Author(s):  
Andrew H. C. Chan ◽  
Jian-Hua Ou

Wave-induced liquefaction is one of the main factors influence the stability of marine structures. However, the investigation on this phenomenon is complicated as the dynamic interaction between soil, pore fluid and the structure is closely coupled. In order to obtain a better understanding of the wave-induced response around the circular caisson founded in the seabed, three dimensional numerical analyses have been performed using the 3D finite element program DYNE3WAC in order to investigate the wave-induced response around the circular caisson.


Author(s):  
K. Ramesh ◽  
R. G. Kirk

Abstract A PC-based program has been developed which is capable of performing stability analysis and response calculations of rotor-bearing systems. The paper discusses the modeling of rotors supported on active magnetic bearings (AMB) and highlights the advantages in the modeling using the finite element method, over the transfer matrix method. An 8-stage centrifugal compressor supported on AMB was chosen for the case study. The results for the stability analysis, obtained using the finite element program was compared with those obtained by the well established transfer matrix codes. The results of unbalance response, including the effects of sensor non collocation are presented and this demonstrates how an AMB supported rotor can experience a synchronous instability for selected sensor locations and balance distributions.


Author(s):  
Vikas Srivastava ◽  
Lallit Anand

In this paper, a brief summary of some of our recent work [1, 2] is presented, with the goal of developing an engineering science-based process-simulation capability for micro-hot-embossing of amorphous polymers. To achieve this goal: (i) a three-dimensional thermo-mechanically-coupled large deformation constitutive theory has been developed to model the temperature and rate-dependent elastic-viscoplastic response of amorphous polymers; (ii) the material parameters in the theory were calibrated by using new experimental data from a suite of simple compression tests on Zeonex-690R (cyclo-olefin polymer), that covers a wide range of temperatures and strain rates; (iii) the constitutive model was implemented in the finite element program ABAQUS/Explicit; and (iv) the predictive capability of the numerical simulation procedures were validated by comparing results from the simulation of a representative micro-hot-embossing process against corresponding results from a physical experiment.


2012 ◽  
Vol 594-597 ◽  
pp. 126-129 ◽  
Author(s):  
Rong Fang Zhou ◽  
Xue Wen Lei ◽  
Qing Shan Meng ◽  
Cong Lin

The principle of effective stress based on unsaturated soil material model and the boundary conditions of rainfall infiltration on the slope are introduced. The numerical model is built according to the example, and then the ABAQUS finite element program, which is combined with fluid-solid coupling, is used to simulate the problem of transient seepage field caused by rainfall infiltration. With the powerful post processing functions ability of ABAQUS program, we can observe the variation law with the time of pore-pressure distribution and displacement field and equivalent plastic strain. Moreover, the effect on the stability of slope under rainfall infiltration is analyzed.


2011 ◽  
Vol 3 (2) ◽  
pp. 56-63
Author(s):  
Rimantas Belevičius ◽  
Darius Mačiūnas ◽  
Dmitrij Šešok

The aim of the article is to report a technology for the optimization of grillage-type foundations seeking for the least possible reactive forces in the piles for a given number of piles and in the absolute value of the bending moments when connecting beams of the grillage. Mathematically, this seems to be the global optimization problem possessing a large number of local minima points. Both goals can be achieved choosing appropriate pile positions under connecting beams; however, these two problems contradict to each other and lead to diff erent schemes for pile placement. Therefore, we suggest using a compromise objective function (to be minimized) that consists of the largest reactive force arising in all piles and that occurring in the absolute value of the bending moment when connecting beams, both with the given weights. Bending moments are calculated at three points of each beam. The design parameters of the problem are positions of the piles. The feasible space of design parameters is determined by two constraints. First, during the optimization process, piles can move only along connecting beams. Therefore, the two-dimensional grillage is “unfolded” to the one-dimensional construct, and supports are allowed to range through this space freely. Second, the minimum allowable distance between two adjacent piles is introduced due to the specific capacities of a pile driver. Also, due to some considerations into the scheme of pile placement, the designer sometimes may introduce immovable supports (usually at the corners of the grillage) that do not participate in the optimization process and always retain their positions. However, such supports hinder to achieve a global solution to a problem and are not treated in this paper. The initial data for the problem are as follows: a geometrical scheme of the grillage, the given number of piles, a cross-section and material data on connecting beams, the minimum possible distance between adjacent supports and loading data given in the form of concentrated loads or trapezoidal distributed loadings. The results of the solution are the required positions of piles. This solution can serve as a pilot project for more detailed design. The entire optimization problem is solved in two steps. First, the grillage is transformed into the one-dimensional construct and the optimizer decides about a routine solution (i.e. the positions of piles in this construct). Second, backward transformation returns pile positions into the two-dimensional grillage and the “black-box” finite element program returns the corresponding objective function value. On the basis of this value, the optimizer predicts new positions of piles etc. The finite element program idealizes connecting beams as beam elements and piles – as mesh nodes of the finite element with a given boundary conditions in the form of vertical and rotational stiff ness. Since the problem may have several tens of design parameters, the only choice for optimization algorithms is using stochastic optimization algorithms. In our case, we use the original elitist real-number genetic algorithm and launch the program sufficient number of times in order to exclude large scattering of results. Three numerical examples are presented for the optimization of 10-pile grillage: when optimizing purely the largest reactive force, purely the largest in the absolute value of the bending moment and both parameters with equal weights.


2013 ◽  
Vol 23 (02) ◽  
pp. 1350036 ◽  
Author(s):  
CHRISTOPH LHOTKA ◽  
ALESSANDRA CELLETTI

We study the stability of a vector field associated to a nearly-integrable Hamiltonian dynamical system to which a dissipation is added. Such a system is governed by two parameters, namely the perturbing and dissipative parameters, and it depends on a drift function. Assuming that the frequency of motion satisfies some resonance assumption, we investigate the stability of the dynamics, and precisely the variation of the action variables associated to the conservative model. According to the structure of the vector field, one can find linear and long-term stability times, which are established under smallness conditions of the parameters. We also provide some applications to concrete examples, which exhibit a linear or long-term stability behavior.


2000 ◽  
Vol 07 (01n02) ◽  
pp. 167-173 ◽  
Author(s):  
J. E. BONNET ◽  
M. G. MARTIN ◽  
J. AVILA ◽  
L. ROCA ◽  
M. C. ASENSIO

The As-terminated Si surface has an ideally flat monolayer of As atoms at the outermost layer, showing a nonreconstructed (1×1) symmetry with one extra valence electron on each As atom, and setting a passivation, on the silicon surface, remarkable for its stablity up to temperatures above 600°C and under Ag deposition. Angle-resolved photoelectron spectroscopy (ARUPS) of valence bands in the main Brillouin zone directions of the As–Si(111) surface, and X-ray photoelectron diffraction (XPD), recorded with the LURE synchrotron light, provide the principal results presented in this work. No arsenic diffusion into the metallic overlayer is detected by photoemission, in a wide range of temperatures, proving the stability of the Ag/As–Si(111) interface, and allowing a first study of the structural and electronic properties of this flat interface. The formation of the silver–metal films on the semiconductor surface has been investigated, in particular the growth mode in the one-monolayer range and the building of the semiconductor–metal interface, and the evolution of the film during the silver deposition up to a few monolayers.


2007 ◽  
Vol 344 ◽  
pp. 677-684 ◽  
Author(s):  
Hartmut Hoffmann ◽  
Christoph Hein ◽  
Seok Moo Hong ◽  
Hyun Woo So

The increasing individualization of products assigns manufacturing companies to new tasks like manufacturing various products in a more efficient way. This progression in the market leads on the one hand to a new product design and on the other hand to an improved production process. Both are necessary to reduce assembly, service and recycling costs. Hence the joining technology is and will become more and more important. The conventional joining technologies like welding, bonding, bolting or clamping have their own disadvantages especially in the field of flexibility. In order to reduce the effort for assembling and disassembling by retaining the requirements of the connection a new innovative joining technology is needed. In this study a new joining technology is introduced to become faster and more flexible in assembling and disassembling. The basic idea of this manufacturing technology comes from a “metal hook and loop fastener”. A hook and loop fastener consisting of metal has a lot of advantages for the fields of industrial assembly, service and recycling. Similar to the synthetic hook and loop fastener a metal one is characterized by easy closing and opening without special tools. And in comparison to the synthetic hook and loop fastener the transmissible forces are very high. An additional benefit can be gained for instance in shock absorbing or resistance against chemical and thermal influence. Two solutions are followed up to invent the “metal hook and loop fastener”. A one-to-one copy of the conventional hook and loop fastener is constructed in metal and specific solutions for the use of metal are tested. A conventional finite element program was used in order to optimize the construction of a metal cocklebur and the results show a good agreement with the experiment.


2013 ◽  
Vol 724-725 ◽  
pp. 1709-1713 ◽  
Author(s):  
Xing Han ◽  
Bing Zhu ◽  
Gui Man Liu ◽  
Jun Ping Wang ◽  
Bao Shan Xiang

Taking a concrete-filled steel tube arch bridge with a span of 80m for example, the paper studies the stability of this bridge by using the general finite element program. The analysis introduces the method to deal with the stability of these bridges by FEM, also demonstrates the result of the eigenvalue analysis and dual nonlinear analysis according to an example. In eigenvalue analysis, the influence of the brace and the X-brace to this arch bridge`s stability are compared under different load cases; in dual nonlinear analysis, the load-displacement curves of three different load cases of the rib failure are given. All of these are some valuable to the stability of the concrete-filled steel tube arch bridge.


2004 ◽  
Vol 06 (02) ◽  
pp. 259-277 ◽  
Author(s):  
JUNCHENG WEI ◽  
MATTHIAS WINTER

We consider the following shadow Gierer–Meinhardt system with saturation: [Formula: see text] where ∊>0 is a small parameter, τ≥0, k>0 and Ω⊂Rn is smooth bounded domain. The case k=0 has been studied by many authors in recent years. Here we give some sufficient conditions on k for the existence and stability of stable spiky solutions. In the one-dimensional case we have a complete answer to the stability behavior. Central to our study are a parameterized ground-state equation and the associated nonlocal eigenvalue problem (NLEP) which is solved by functional analysis arguments and the continuation method.


Sign in / Sign up

Export Citation Format

Share Document