scholarly journals Distributed Control

1999 ◽  
Vol 121 (01) ◽  
pp. 68-69
Author(s):  
Daryl Prince

This article discusses servo motion systems, which are motion control systems that combine hardware and software, have innumerable applications in compact modules. Some motion controllers operate on multiple platforms and buses, with units providing analog output to a conventional amplifier, as well as units that provide current control and direct pulse width modulation (PWM) output for as many as 32 motors simultaneously. There are amplifiers that still require potentiometers to be adjusted for the digital drives’ position, velocity, and current control. All major value-adding components of motion control systems will soon have to comply with the demands for faster controllers with high-speed multi axis capabilities supplying commands in multitasking applications.

Author(s):  
Gang Yang ◽  
Kai Chen ◽  
Linglong Du ◽  
Jingmin Du ◽  
Baoren Li

A vacuum pressure tracking system with high-speed on-off valves is a discontinuous system due to the discrete nature of high-speed on-off valves. Chamber pressure changes in the system are determined by the mass flow rates during the processes of charging and discharging. Here, a sliding mode controller with an asymmetric compensator based on average mass flow rate is designed for accurate vacuum pressure tracking. The controller output signal is converted into the duty cycles of the high-speed on-off valves via a pulse width modulation pulsing scheme. Owing to the extreme asymmetry of the processes, an asymmetric structure comprising one high-speed on-off valve in the charging unit and three high-speed on-off valves in the discharging unit is applied to weaken the impact of asymmetry. In addition, an asymmetric compensator is also designed to modify the pulse width modulation pulsing scheme to further eliminate the asymmetry. Experimental results indicate that the proposed controller achieves better performance in pressure tracking with the asymmetric compensator overcoming process asymmetry and enhancing system robustness.


2020 ◽  
Vol 178 ◽  
pp. 01001 ◽  
Author(s):  
Viktor Meshcheryakov ◽  
Tatyana Sinyukova ◽  
Alexey Sinyukov ◽  
Andrei Boikov ◽  
Rustem Mukhametzhanov

The study aims at the analysis of vector control asynchronous electric drive systems. For comparison and evaluation, mathematical models of systems are implemented in the environment of simulation modeling Matlab Simulink. The evaluation criteria selected were: complexity of implementation, energy efficiency of the inverter, accuracy of speed maintenance, torque ripple, reaction speed of the system to disturbances from the side of the drive mechanism, impact on the supply network. Vector control systems by ensuring the maintenance of accuracy of the moment in the entire range of speed control are more widespread. The study of vector systems, the formation of the stator voltage vector in which is carried out using pulse-width modulation. The signal organization during the study was carried out by several methods. At the initial stage, the signal was formed due to relay-vector control in a closed loop for monitoring the instantaneous values of current errors without forced modulation; at the next stage of the study, the signal was generated using sinusoidal pulse-width modulation based on a comparison of control signals with some reference vector, the final stage became a spatial-vector modulation method.


2020 ◽  
Vol 34 (4) ◽  
pp. 1711-1722
Author(s):  
Qiang Gao ◽  
Yuchuan Zhu ◽  
Zhang Luo ◽  
Niyomwungeri Bruno

Sign in / Sign up

Export Citation Format

Share Document