Probabilistic Integrity Assessment of Corroded Gas Pipelines

2006 ◽  
Vol 128 (4) ◽  
pp. 547-555 ◽  
Author(s):  
Sang-Min Lee ◽  
Yoon-Suk Chang ◽  
Jae-Boong Choi ◽  
Young-Jin Kim

Pressurized gas pipelines are subject to harmful effects from both the surrounding environments and the materials passing through them. Reliable assessment procedures, including fracture mechanics analyses, are required to maintain their integrity. Currently, integrity assessments are performed using conventional deterministic approaches, even though there are many uncertainties to hinder rational evaluations. Therefore, in this study, a probabilistic approach was considered for gas pipeline evaluations. The objectives are to estimate the failure probability of corroded pipelines in the gas and oil industries and to propose operating limit conditions for different types of loadings. To achieve these objectives, a probabilistic assessment program was developed using reliability index method and simulation techniques, and applied to estimate the failure probabilities of corroded API-5L-X52/X60 gas pipelines subjected to internal pressure, bending moment, and combined loading. The operating limit conditions as well as prototypal evaluation and sensitivity analysis results showed a promising applicability of the probabilistic integrity assessment program.

Author(s):  
Sang-Min Lee ◽  
Yoon-Suk Chang ◽  
Young-Jin Kim

The integrity of nuclear piping systems must be maintained during operation. In order to maintain the integrity, reliable assessment procedures including fracture mechanics analysis, etc, are required. Up to now, the integrity assessment has been performed using conventional deterministic approaches even though there are many uncertainties to hinder a rational evaluation. In this respect, probabilistic approach is considered as an appropriate method for piping system evaluation. The objectives of this paper are to develop a probabilistic assessment program using reliability index and simulation technique and to estimate the failure probability of wall-thinned pipes in secondary systems. The probabilistic assessment program consists of three evaluation modules that are: first order reliability method, second order reliability method and crude Monte Carlo simulation method. The developed program has been applied to evaluate failure probabilities of wall-thinned piping system subjected to internal pressure, global bending moment and combined loading. The evaluation results showed a promising applicability of the probabilistic integrity assessment program.


Author(s):  
Liwu Wei

Fracture assessment diagram (FAD) based fracture assessment procedures are universally adopted by standards/documents including BS7910, R6, API579-1/ASME FFS-1 and FITNET. In the use of a FAD for structural integrity assessment, one important consideration is to determine the load ratio (Lr) which is defined by two equivalent definitions: Lr is either defined as the ratio of reference stress (σref) to yield strength (σY) as in BS7910, or as the ratio of applied load to plastic limit load as in R6. The solutions of reference stress or limit load are given in the assessment procedures for commonly encountered flawed structures such as a plate containing a surface crack and a cylinder containing an external surface crack. Although the solutions given in the various standards are not all the same, they were invariably derived on the basis of analysis of the force and moment equilibrium with regard to a flawed section and few of them has taken into account the effects of bi-axial stressing on a flawed section, thus remaining a question whether these solutions are still valid in situations involving bi-axial loading such as the presence of pressure in a cylinder in addition to axial tension and bending. In this work, finite element analysis (FEA) of plastic collapse was systematically performed on circumferential internal surface cracks in a cylinder subjected to various combined loads, including combined tension and pressure, combined bending moment and pressure, and combined tension, bending moment and pressure. The focus was on understanding the effects of bi-axial stressing due to pressure on plastic limit load. The investigation of these cases has demonstrated a significant effect in plastic limit load arising from the application of pressure introducing a state of bi-axial stressing. Comparison of the results of plastic limit load obtained from FEA with those derived from BS 7910 reference stress solutions was carried out to assess the applicability when the standard solutions of plastic collapse are used in the applications containing bi-axial stresses.


2017 ◽  
Vol 68 (6) ◽  
pp. 1267-1273
Author(s):  
Valeriu V. Jinescu ◽  
Angela Chelu ◽  
Gheorghe Zecheru ◽  
Alexandru Pupazescu ◽  
Teodor Sima ◽  
...  

In the paper the interaction of several loads like pressure, axial force, bending moment and torsional moment are analyzed, taking into account the deterioration due to cracks and the influence of residual stresses. A nonlinear, power law, of structure material is considered. General relationships for total participation of specific energies introduced in the structure by the loads, as well as for the critical participation have been proposed. On these bases: - a new strength calculation methods was developed; � strength of tubular cracked structures and of cracked tubular junction subjected to combined loading and strength were analyzed. Relationships for critical state have been proposed, based on dimensionless variables. These theoretical results fit with experimental date reported in literature. On the other side stress concentration coefficients were defined. Our one experiments onto a model of a pipe with two opposite nozzles have been achieved. Near one of the nozzles is a crack on the run pipe. Trough the experiments the state of stress have been obtained near the tubular junction, near the tip of the crack and far from the stress concentration points. On this basis the stress concentration coefficients were calculated.


Author(s):  
Kunio Hasegawa ◽  
Yinsheng Li ◽  
Bostjan Bezensek ◽  
Phuong Hoang

Piping items in power plants may experience combined bending and torsion moments during operation. Currently, there is a lack of guidance in the ASME B&PV Code Section XI for combined loading modes including pressure, torsion and bending. Finite element analyses were conducted for 24-inch diameter Schedule 80 pipes with local wall thinning subjected to tensile and compressive stresses. Plastic collapse bending moments were calculated under constant torsion moments. From the calculation results, it can be seen that collapse bending moment for pipes with local thinning subjected to tensile stress is smaller than that subjected to compressive stress. In addition, equivalent moment is defined as the root the sum of the squares of the torsion and bending moments. It is found that the equivalent moments can be approximated with the pure bending moments, when the wall thinning length is equal or less than 7.73R·t for the wall thinning depth of 75% of the nominal thickness, where R is the mean radius and t is the wall thickness of the pipe.


Author(s):  
Yinsheng Li ◽  
Kunio Hasegawa ◽  
Phuong H. Hoang ◽  
Bostjan Bezensek

When a crack is detected in a pipe during in-service inspection, the failure estimation method given in the codes such as ASME Boiler and Pressure Vessel Code Section XI non-mandatory Appendix C or JSME S NA-1-2008 Appendix E-8 can be applied to assess the integrity of the pipe. In the current editions of these codes, the failure estimation method is provided for bending moment and pressure. Torsion load is assumed to be relatively small and is not considered in the method. In this paper, finite element analyses are conducted for 24-inch stainless steel pipe with a circumferential surface crack subjected to the combined bending and torsion moments, focusing on large and pure torsion moments. Based on the analysis results, a prediction method for plastic collapse under the combined loading conditions of bending and torsion is proposed for the entire range of torsion moments.


Author(s):  
K. M. Prabhakaran ◽  
S. R. Bhate ◽  
V. Bhasin ◽  
A. K. Ghosh

Piping elbows under bending moment are vulnerable to cracking at crown. The structural integrity assessment requires evaluation of J-integral. The J-integral values for elbows with axial part-through internal crack at crown under in-plane bending moment are limited in open literature. This paper presents the J-integral results of a thick and thin, 90-degree, long radius elbow subjected to in-plane opening bending moment based on number of finite element analyses covering different crack configurations. The non-linear elastic-plastic finite element analyses were performed using WARP3D software. Both geometrical and material nonlinearity were considered in the study. The geometry considered were for Rm/t = 5, and 12 with ratio of crack depth to wall thickness, a/t = 0.15, 0.25, 0.5 and 0.75 and ratio of crack length to crack depth, 2c/a = 6, 8, 10 and 12.


Author(s):  
Виктор Миронович Варшицкий ◽  
Евгений Павлович Студёнов ◽  
Олег Александрович Козырев ◽  
Эльдар Намикович Фигаров

Рассмотрена задача упругопластического деформирования тонкостенной трубы при комбинированном нагружении изгибающим моментом, осевой силой и внутренним давлением. Решение задачи осуществлено по разработанной методике с помощью математического пакета Matcad численным методом, основанным на деформационной теории пластичности и безмоментной теории оболочек. Для упрощения решения предложено сведение двумерной задачи к одномерной задаче о деформировании балки, материал которой имеет различные диаграммы деформирования при сжатии и растяжении в осевом направлении. Проведено сравнение с результатами численного решения двумерной задачи методом конечных элементов в упругопластической постановке. Результаты расчета по инженерной методике совпадают с точным решением с точностью, необходимой для практического применения. Полученные результаты упругопластического решения для изгибающего момента в сечении трубопровода при комбинированном нагружении позволяют уточнить известное критериальное соотношение прочности сечения трубопровода с кольцевым дефектом в сторону снижения перебраковки. Применение разработанной методики позволяет ранжировать участки трубопровода с непроектным изгибом по степени близости к предельному состоянию при комбинированном нагружении изгибающим моментом, продольным усилием и внутренним давлением. The problem of elastic plastic deformation of a thin-walled pipe under co-binned loading by bending moment, axial force and internal pressure is considered. The problem is solved by the developed method using the Matcad mathematical package by a numerical method based on the deformation theory of plasticity and the momentless theory of shells. To simplify the solution of the problem, it is proposed to reduce a twodimensional problem to a one-dimensional problem about beam deformation, the material of which has different deformation diagrams under compression and tension in the axial direction. Comparison with the results of numerical solution of the two-dimensional problem with the finite element method in the elastic plastic formulation is carried out. The obtained results of the elastic-plastic solution for the bending moment in the pipeline section under combined loading make it possible to clarify criterion ratio of the strength of the pipeline section with an annular defect in the direction of reducing the rejection. Application of the developed approach allows to rank pipeline sections with non-design bending in the steppe close to the limit state under combined loading of the pipeline with bending moment, longitudinal force and internal pressure.


2021 ◽  
Author(s):  
Michael John Stephens ◽  
Simon John Roberts ◽  
Derek James Bennet

Abstract Understanding the structural limits of subsea connectors used in offshore environments is critical to ensure safe operations. The latest industry standards establish the requirement for physical testing to validate analysis methodologies for connector designs. In this paper, an analysis methodology, compliant with the latest API 17G standard, is presented for calculating structural capacities of non-preloaded connectors. The methodology has been developed for complex combined loading scenarios and validated using full-scale physical testing for different connector families. Detailed 3-D, non-linear, finite element models were developed for three different non-preloaded connections, which consisted of threaded and load shoulder connectors. A comprehensive set of combined tension and bending moment structural capacities at normal, extreme and survival conditions were calculated for each connection. The calculated capacities were validated for each connection by performing a test sequence using full-scale structural testing. A final tension or bending to failure test was also completed for each test connection to validate the physical failure mode, exceeding the latest API 17G requirements. For all connections tested, capacities calculated using the methodology were validated from the successful completion of the test sequences. The physical failure modes of the test connections also matched the predicted failure modes from the FEA, and the tensile or bending moment loading at physical collapse exceeded that predicted by the global collapse of the FEA model. Using the validated approach described in this paper significantly reduces the requirement of physical testing for connector families, establishing confidence in the structural limits that are critical for safe operations.


Author(s):  
Kazuya Osakabe ◽  
Koichi Masaki ◽  
Jinya Katsuyama ◽  
Genshichiro Katsumata ◽  
Kunio Onizawa

To assess the structural integrity of reactor pressure vessels (RPVs) during pressurized thermal shock (PTS) events, the deterministic fracture mechanics approach prescribed in Japanese code JEAC 4206-2007 [1] has been used in Japan. The structural integrity is judged to be maintained if the stress intensity factor (SIF) at the crack tip during PTS events is smaller than fracture toughness KIc. On the other hand, the application of a probabilistic fracture mechanics (PFM) analysis method for the structural reliability assessment of pressure components has become attractive recently because uncertainties related to influence parameters can be incorporated rationally. A probabilistic approach has already been adopted as the regulation on fracture toughness requirements against PTS events in the U.S. According to the PFM analysis method in the U.S., through-wall cracking frequencies (TWCFs) are estimated taking frequencies of event occurrence and crack arrest after crack initiation into consideration. In this study, in order to identify the conservatism in the current RPV integrity assessment procedure in the code, probabilistic analyses on TWCF have been performed for certain model of RPVs. The result shows that the current assumption in JEAC 4206-2007, that a semi-elliptic axial crack is postulated on the inside surface of RPV wall, is conservative as compared with realistic conditions. Effects of variation of PTS transients on crack initiation frequency and TWCF have been also discussed.


Author(s):  
L. Stefanini ◽  
F. J. Blom

In this study a probabilistic Leak-Before-Break (LBB) analysis was carried out based on the R6 FAD Option 1 assessment method. The method uses the material fracture toughness and yield stress in order to determine, deterministically, a Critical Crack Length (CCL) and a Leakage Rate (LR) through a crack. In order to define the fracture toughness of the material, the Master Curve approach was used accordingly to BS7910:2013 Annex J. Initially, deterministic analyses were carried out and the fracture toughness and yield stress were set to 190 MPa√m and 158 MPa, respectively. In order to implement a probabilistic approach, the yield stress and fracture toughness were introduced as stochastic parameter. The Fracture toughness was generated using a Weibull distribution to match the Master Curve. The distribution was built such that 190 MPa√m represents the 5% probability fracture toughness. The Yield stress (0.2% proof strength) was generated using a normal distribution with standard deviation 10.35 MPa such that the average value was 175 MPa and the lower bound (5% of probability of occurrence) was 158 MPa. The choice of building the distribution as above mentioned was justified by the fact that in structural integrity assessment the lower 5% is generally used for material parameters. Thus, once a Detectable Leakage Rate (DLR) was determined, it was possible to assign an implicit probability of failure to the deterministic case. The calculations were then extended by using several LR formulas. The calculations were carried out making use of the probabilistic software RAP++ coupled to MATLAB. The probabilities of failure were calculated with regard to a postulated DLR and a DLRSF corrected with a safety factor of 10. The probabilities of failure for the DLRSF were proved to be 9 to 15 times higher than for the postulated DLR case, which leads to the opportunity of conservatism reduction.


Sign in / Sign up

Export Citation Format

Share Document