scholarly journals Turbulence Modeling in Three-Dimensional Stenosed Arterial Bifurcations

2006 ◽  
Vol 129 (1) ◽  
pp. 40-50 ◽  
Author(s):  
J. Banks ◽  
N. W. Bressloff

Under normal healthy conditions, blood flow in the carotid artery bifurcation is laminar. However, in the presence of a stenosis, the flow can become turbulent at the higher Reynolds numbers during systole. There is growing consensus that the transitional k−ω model is the best suited Reynolds averaged turbulence model for such flows. Further confirmation of this opinion is presented here by a comparison with the RNG k−ϵ model for the flow through a straight, nonbifurcating tube. Unlike similar validation studies elsewhere, no assumptions are made about the inlet profile since the full length of the experimental tube is simulated. Additionally, variations in the inflow turbulence quantities are shown to have no noticeable affect on downstream turbulence intensity, turbulent viscosity, or velocity in the k−ϵ model, whereas the velocity profiles in the transitional k−ω model show some differences due to large variations in the downstream turbulence quantities. Following this validation study, the transitional k−ω model is applied in a three-dimensional parametrically defined computer model of the carotid artery bifurcation in which the sinus bulb is manipulated to produce mild, moderate, and severe stenosis. The parametric geometry definition facilitates a powerful means for investigating the effect of local shape variation while keeping the global shape fixed. While turbulence levels are generally low in all cases considered, the mild stenosis model produces higher levels of turbulent viscosity and this is linked to relatively high values of turbulent kinetic energy and low values of the specific dissipation rate. The severe stenosis model displays stronger recirculation in the flow field with higher values of vorticity, helicity, and negative wall shear stress. The mild and moderate stenosis configurations produce similar lower levels of vorticity and helicity.

2016 ◽  
Author(s):  
Guilherme Feitosa Rosetti ◽  
Guilherme Vaz ◽  
André Luís Condino Fujarra

The cylinder flow is a canonical problem for Computational Fluid Dynamics (CFD), as it can display several of the most relevant issues for a wide class of flows, such as boundary layer separation, vortex shedding, flow instabilities, laminar-turbulent transition and others. Several applications also display these features justifying the amount of energy invested in studying this problem in a wide range of Reynolds numbers. The Unsteady Reynolds Averaged Navier Stokes (URANS) equations combined with simplifying assumptions for turbulence have been shown inappropriate for the captive cylinder flow in an important range of Reynolds numbers. For that reason, recent improvements in turbulence modeling has been one of the most important lines of research within that issue, aiming at better prediction of flow and loads, mainly targeting the three-dimensional effects and laminar-turbulent transition, which are so important for blunt bodies. In contrast, a much smaller amount of work is observed concerning the investigation of turbulent effects when the cylinder moves with driven or free motions. Evidently, larger understanding of the contribution of turbulence in those situations can lead to more precise mathematical and numerical modeling of the flow around a moving cylinder. In this paper, we present CFD calculations in a range of moderate Reynolds numbers with different turbulence models and considering a cylinder in captive condition, in driven and in free motions. The results corroborate an intuitive notion that the inertial effects indeed play very important role in determining loads and motions. The flow also seems to adapt to the motions in such a way that vortices are more correlated and less influenced by turbulence effects. Due to good comparison of the numerical and experimental results for the moving-cylinder cases, it is observed that the choice of turbulence model for driven and free motions calculations is markedly less decisive than for the captive cylinder case.


2016 ◽  
Vol 138 (9) ◽  
Author(s):  
Vladimir Viktorov ◽  
Carmen Visconte ◽  
Md Readul Mahmud

A novel passive micromixer, denoted as the Y-Y mixer, based on split-and-recombine (SAR) principle is proposed and studied both experimentally and numerically over Reynolds numbers ranging from 1 to 100. Two species are supplied to a prototype via a Y inlet, and flow through four identical elements repeated in series; the width of the mixing channel varies from 0.4 to 0.6 mm, while depth is 0.4 mm. An image analysis technique was used to evaluate mixture homogeneity at four target areas along the mixer. Numerical simulations were found to be a useful support for observing the complex three-dimensional flow inside the channels. Comparison with a known mixer, the tear-drop one, based on the same SAR principle, was also performed, to have a point of reference for evaluating performances. A good agreement was found between numerical and experimental results. Over the examined range of Reynolds numbers Re, the Y-Y micromixer showed at its exit an almost flat mixing characteristic, with a mixing efficiency higher than 0.9; conversely, the tear-drop mixer showed a relevant decrease of efficiency at the midrange. The good performance of the Y-Y micromixer is due to the three-dimensional 90 deg change of direction that occurs in its channel geometry, which causes a fluid swirling already at the midrange of Reynolds numbers. Consequently, the fluid path is lengthened and the interfacial area of species is increased, compensating for the residence time reduction.


2005 ◽  
Vol 127 (5) ◽  
pp. 782-797 ◽  
Author(s):  
Liang Ge ◽  
Hwa-Liang Leo ◽  
Fotis Sotiropoulos ◽  
Ajit P. Yoganathan

Time-accurate, fully 3D numerical simulations and particle image velocity laboratory experiments are carried out for flow through a fully open bileaflet mechanical heart valve under steady (nonpulsatile) inflow conditions. Flows at two different Reynolds numbers, one in the laminar regime and the other turbulent (near-peak systole flow rate), are investigated. A direct numerical simulation is carried out for the laminar flow case while the turbulent flow is investigated with two different unsteady statistical turbulence modeling approaches, unsteady Reynolds-averaged Navier-Stokes (URANS) and detached-eddy simulation (DES) approach. For both the laminar and turbulent cases the computed mean velocity profiles are in good overall agreement with the measurements. For the turbulent simulations, however, the comparisons with the measurements demonstrate clearly the superiority of the DES approach and underscore its potential as a powerful modeling tool of cardiovascular flows at physiological conditions. The study reveals numerous previously unknown features of the flow.


Most of the experimental work in connection with the flow of fluids through diaphragm orifices in pipe lines has been directed to the establishment of the orifice as a flow meter, and has been carried out at the velocities of flow commonly encountered in commercial practice. As a result of such research the coefficients relating the volumetric discharge of incompressible fluids to the differential head across an orifice are well known over a large range of high Reynolds numbers. For a particular diameter ratio ( i. e., orifice diameter ÷ diameter of pipe line) the discharge coefficient is nearly constant under conditions of turbulent flow. Over the range from steady to turbulent flow, however, very appreciable variations occur in the value of the discharge coefficient, suggest­ing that the accompanying variations in the nature of the flow through and beyond the orifice will be no less marked. As regards the turbulent flow pattern, an investigation, in which the author collaborated, of the airflow downstream of a flat plate suggests that an orifice in a pipe will in general give rise to a vortex system, probably having some points of resemblance to the well-known Kármán street which is a feature of the two-dimensional flow past a bluff obstacle, but doubtless exhibiting interesting differences arising from the symmetrical and three-dimensional character of the flow through an orifice. At sufficiently low Reynolds numbers, on the other hand, perfect flow free from periodic vorticity will occur. The stages connecting these two extreme conditions present many points of interest not only as regards the nature of the vortex system downstream of the orifice and the conditions of flow covering its inception, but also as regards the accom­panying pressure-velocity relation during the transition.


1990 ◽  
pp. 329-334 ◽  
Author(s):  
P. J. Reuderink ◽  
P. J. B. Willems ◽  
P. J. G. Schreurs ◽  
A. A. van Steenhoven

2009 ◽  
Vol 15 ◽  
pp. 21-26
Author(s):  
O.A. Morales-Contreras ◽  
J.G. Barbosa-Saldaña ◽  
J.A. Jiménez-Bernal ◽  
Claudia del Carmen Gutiérrez Torres

Numerical simulation for the three-dimensional laminar flow through a forward facing step channel was simulated by Fluent 6.3 code. Four Reynolds numbers and four step lengths were analyzed. The results showed that the length of the recirculation zone upstream the step depends on Reynolds number, as well as on the step height (h), while the height of the recirculation zone extends about 70% of the step height. In addition, it was found that the velocity profile in the stream direction at the channel exit presents a fully developed profile for the axial component. Nonetheless, the profile along the transversal direction does not have a parabolic profile, even for a length of 60h


1995 ◽  
Vol 5 (3) ◽  
pp. 199-203 ◽  
Author(s):  
Toshiyuki Uehara ◽  
Masayasu Tabuchi ◽  
Yukio Ohsumi ◽  
Yukihiro Yoneda ◽  
Etsuro Mori

Sign in / Sign up

Export Citation Format

Share Document