Influence of Loading Distribution on the Off-Design Performance of High-Pressure Turbine Blades

2006 ◽  
Vol 129 (3) ◽  
pp. 563-571 ◽  
Author(s):  
D. Corriveau ◽  
S. A. Sjolander

Linear cascade measurements for the aerodynamic performance of a family of three transonic, high-pressure (HP) turbine blades have been presented previously by the authors. The airfoils were designed for the same inlet and outlet velocity triangles but varied in their loading distributions. The previous papers presented results for the design incidence at various exit Mach numbers, and for off-design incidence at the design exit Mach number of 1.05. Results from the earlier studies indicated that by shifting the loading towards the rear of the airfoil an improvement in the profile loss performance of the order of 20% could be obtained near the design Mach number at design incidence. Measurements performed at off-design incidence, but still at the design Mach number, showed that the superior performance of the aft-loaded blade extended over a range of incidence from about −5.0deg to +5.0deg relative to the design value. For the current study, additional measurements were performed at off-design Mach numbers from about 0.5 to 1.3 and for incidence values of −10.0deg, +5.0deg, and +10.0deg relative to design. The corresponding Reynolds numbers, based on outlet velocity and true chord, varied from roughly 4×105 to 10×105. The measurements included midspan losses, blade loading distributions, and base pressures. In addition, two-dimensional Navier–Stokes computations of the flow were performed to help in the interpretation of the experimental results. The results show that the superior loss performance of the aft-loaded profile, observed at design Mach number and low values of off-design incidence, does not extend readily to off-design Mach numbers and larger values of incidence. In fact, the measured midspan loss performance for the aft-loaded blade was found to be inferior to, or at best equal to, that of the baseline, midloaded airfoil at most combinations of off-design Mach number and incidence. However, based on the observations made at design and off-design flow conditions, it appears that aft-loading can be a viable design philosophy to employ in order to reduce the losses within a blade row provided the rearward deceleration is carefully limited. The loss performance of the front-loaded blade is inferior or at best equal to that of the other two blades for all operating conditions.

Author(s):  
D. Corriveau ◽  
S. A. Sjolander

Linear cascade measurements for the aerodynamic performance of a family of three transonic, high-pressure (HP) turbine blades have been presented previously by the authors. The airfoils were designed for the same inlet and outlet velocity triangles but varied in their loading distributions. The previous papers presented results for the design incidence at various exit Mach numbers, and for off-design incidence at the design exit Mach number of 1.05. Results from the earlier studies indicated that by shifting the loading towards the rear of the airfoil an improvement in the profile loss performance of the order of 20% could be obtained near the design Mach number at design incidence. Measurements performed at off-design incidence, but still at the design Mach number, showed that the superior performance of the aft-loaded blade extended over a range of incidence from about −5.0° to +5.0° relative to the design value. For the current study, additional measurements were performed at off-design Mach numbers from about 0.5 to 1.3 and for incidence values of −10.0°, +5.0° and + 10.0° relative to design. The corresponding Reynolds numbers, based on outlet velocity and true chord, varied from roughly 4 × 105 to 10 × 105. The measurements included midspan losses, blade loading distributions and base pressures. In addition, two-dimensional Navier-Stokes computations of the flow were performed to help in the interpretation of the experimental results. The results show that the superior loss performance of the aft-loaded profile, observed at design Mach number and low values of off-design incidence, does not extend readily to off-design Mach numbers and larger values of incidence. In fact, the measured midspan loss performance for the aft-loaded blade was found to be inferior to, or at best equal to, that of the baseline, mid-loaded airfoil at most combinations of off-design Mach number and incidence. However, based on the observations made at design and off-design flow conditions, it appears that aft-loading can be a viable design philosophy to employ in order to reduce the losses within a blade row provided the rearward deceleration is carefully limited. The loss performance of the front-loaded blade is inferior or at best equal to that of the other two blades for all operating conditions. As such, it appears that there is no advantage to front loading the airfoil for transonic high-pressure turbine blades. The results also provide a significant addition to the data available in the open literature on the off-design performance of transonic HP turbine airfoils.


Author(s):  
D. Corriveau ◽  
S. A. Sjolander

Linear cascade measurements for the aerodynamic performance of three transonic High Pressure (HP) turbine blades have been presented previously by Corriveau and Sjolander [1] [2] for the design incidence. The airfoils were designed for the same inlet and outlet velocity triangles but varied in their loading distributions. Results from the earlier studies indicated that by shifting the loading towards the rear of the airfoil an improvement in the profile loss performance of the order of 20% could be obtained near the design Mach number of 1.05. The measurements have been extended to off-design incidence to investigate the effects of incidence on the performance of HP turbine blades having differing loading distributions. The additional measurements were performed for incidence values of −10.0°, +5.0°, and +10.0° relative to the design incidence. In addition, two-dimensional Navier-Stokes numerical simulations of the cascade flow were performed in order to help in the interpretation of the experimental results. The exit Mach number was kept at the design value of 1.05. The corresponding Reynolds numbers, based on outlet velocity and true chord, is roughly 10 × 105. The measurements include midspan losses, outlet flow angles, blade loading distributions and base pressures. The results show that the superior loss performance of the aft-loaded profile, observed at design incidence and Mach number, could also be seen for off-design values of incidence ranging from about −5.0° to +5.0°. However, it was found that for incidences greater than about +5.0° the performance of the aft-loaded blade deteriorated rapidly. The front-loaded airfoil showed generally similar performance to that of the baseline mid-loaded airfoil up to an incidence of +5.0°, at which point its performance also deteriorates significantly.


2004 ◽  
Vol 126 (2) ◽  
pp. 288-296 ◽  
Author(s):  
D. Corriveau ◽  
S. A. Sjolander

Midspan measurements were made in a transonic wind tunnel for three high pressure turbine blade cascades at design incidence. The baseline profile is the midspan section of a high pressure turbine blade of fairly recent design. It is considered mid-loaded. To gain a better understanding of blade loading limits and the influence of loading distributions, the profile of the baseline airfoil was modified to create two new airfoils having aft-loaded and front-loaded pressure distributions. Tests were performed for exit Mach numbers between 0.6 and 1.2. In addition, measurements were made for an extended range of Reynolds numbers for constant Mach numbers of 0.6, 0.85, 0.95, and 1.05. At the design exit Mach number of 1.05, the aft-loaded airfoil showed a reduction of almost 20% in the total pressure losses compared with the baseline airfoil. However, it was also found that for Mach numbers higher than the design value the performance of the aft-loaded blade deteriorated rapidly. The front-loaded airfoil showed generally inferior performance compared with the baseline airfoil.


Author(s):  
R. J. Boyle ◽  
B. L. Lucci ◽  
V. G. Verhoff ◽  
W. P. Camperchioli ◽  
H. La

Midspan aerodynamic measurements for a three vane-four passage linear turbine vane cascade are given. The vane axial chord was 4.45cm. Surface pressures and loss coefficients were measured at exit Mach numbers of 0.3, 0.7, and 0.9. Reynolds number was varied by a factor of six at the two highest Mach numbers, and by a factor often at the lowest Mach number. Measurements were made with and without a turbulence grid. Inlet turbulence intensities were less than 1% and greater than 10%. Length scales were also measured. Pressurized air fed the test section, and exited to a low pressure exhaust system. Maximum inlet pressure was two atmospheres. The minimum inlet pressure for an exit Mach number of 0.9 was one-third of an atmosphere, and at a Mach number of 0.3, the minimum pressure was half this value. The purpose of the test was to provide data for verification of turbine vane aerodynamic analyses, especially at low Reynolds numbers. Predictions obtained using a Navier-Stokes analysis with an algebraic turbulence model are also given.


Author(s):  
Santosh Abraham ◽  
Kapil Panchal ◽  
Song Xue ◽  
Srinath V. Ekkad ◽  
Wing Ng ◽  
...  

The paper presents detailed measurements of midspan total pressure loss, secondary flow field, static pressure measurements on airfoil surface at midspan, near hub and near the end walls in a transonic turbine airfoil cascade. Numerous low-speed experimental studies have been carried out to investigate the performance of turbine cascades. Profile and secondary loss correlations have been developed and improved over the years to include the induced incidence and leading edge geometry and to reflect recent trends in turbine design. All of the above investigations have resulted in better understanding of flow field in turbine passages. However, there is still insufficient data on the performance of turbine blades with high turning angles operating at varying incidences angles at transonic Mach numbers. In the present study, measurements were made at +10, 0 and −10 degree incidence angles for a high turning turbine airfoil with 127 degree turning. The exit Mach numbers were varied within a range from 0.6 to 1.1. Additionally, the exit span is increased relative to the inlet span resulting in one end wall diverging from inlet to exit at 13 degree angle. This was done in order to obtain a ratio of inlet Mach number to exit Mach number which is representative to that encountered in real engine and simulates the blade and near end wall loading that is seen in an engine. 3D viscous compressible CFD analysis was carried out in order to compare the results with experimentally obtained values and to further investigate the design and off-design flow characteristics of the airfoil under study. All aerodynamic measurements were compared with CFD analysis and a reasonably good match was observed.


2013 ◽  
Vol 444-445 ◽  
pp. 221-226
Author(s):  
Xin Xu ◽  
Da Wei Liu ◽  
De Hua Chen ◽  
Yuan Jing Wang

The shock-induced separation easily occurred on the upper surface of supercritical airfoil at transonic speeds, which would change the aerodynamic characteristics. The problem of the shock-induced separation was not solved completely for the complicated phenomena and flow mechanism. In this paper, the influencing factors of shock-induced separation for supercritical airfoil CH was analyzed at transonic speeds. The Navier-Stokes equations were solved, in order to investigate influence of different attack angles, Mach numbers and Reynolds numbers. The computation attack angles of CH airfoil varied from 0oto 7o, Reynolds numbers varied from 5×106to 50×106per airfoil chord while Mach number varied from 0.74 to 0.82. It was shown that the shock-induced separation was affected by attack angles, Mach numbers and Reynolds numbers, but the influence tendency and areas were quite different. The shock wave location and intensity were affected by the three factors, and the boundary layer thickness was mainly affected by Reynolds number, while the separation structure was mainly determined by the attack angle and Mach number.


Author(s):  
Santosh Abraham ◽  
Kapil Panchal ◽  
Srinath V. Ekkad ◽  
Wing Ng ◽  
Barry J. Brown ◽  
...  

Performance data for high turning gas turbine blades under transonic Mach numbers is significantly lacking in literature. Performance of three gas turbine airfoils with varying turning angles at transonic flow conditions was investigated in this study. Midspan total pressure loss, secondary flow field and static pressure measurements on the airfoil surface in a linear cascade setting were measured. Airfoil curvature and true chord were varied to change the loading vs. chord for each airfoil. Airfoils A, D and E are designed to operate at different velocity triangles. Velocity triangle requirements (inlet/exit Mach number and gas angles) come from 1D and 2D models that include calibrated loss systems. One of the goals of this study was to use the experimental data to confirm/refine loss predictions for the effect of various Mach numbers and gas turning angles. The cascade exit Mach numbers were varied within a range from 0.6 to 1.1. The airfoil turning angle ranges from 120° to 138°. A realistic inlet/exit Mach number ratio, that is representative of that seen in a real engine, was obtained by reducing the inlet span with respect to the exit span of the airfoil, thereby creating a quasi 2D cascade. In order to compare the experimental results and study the detailed flow characteristics, 3D viscous compressible CFD analysis was also carried out.


Author(s):  
D. Corriveau ◽  
S. A. Sjolander

Midspan measurements were made in a transonic wind tunnel for three HP turbine blade cascades at design incidence. The baseline profile is the midspan section of a HP turbine blade of fairly recent design. It is considered mid-loaded. To gain a better understanding of blade loading limits and the influence of loading distributions, the profile of the baseline airfoil was modified to create two new airfoils having aft-loaded and front-loaded pressure distributions. Tests were performed for exit Mach numbers between 0.6 and 1.2. In addition, measurements were made for an extended range of Reynolds numbers for constant Mach numbers of 0.6, 0.85, 0.95 and 1.05. At the design exit Mach number of 1.05, the aft-loaded airfoil showed a reduction of almost 20% in the total pressure losses compared with the baseline airfoil. However, it was also found that for Mach numbers higher than the design value the performance of the aft-loaded blade deteriorated rapidly. The front-loaded airfoil showed generally inferior performance compared with the baseline airfoil.


Author(s):  
Shang-Feng Yang ◽  
Je-Chin Han ◽  
Salam Azad ◽  
Ching-Pang Lee

This paper experimentally investigates the effect of rotation on heat transfer in typical turbine blade serpentine coolant passage with ribbed walls at low Mach numbers. To achieve the low Mach number (around 0.01) condition, pressurized Freon R-134a vapor is utilized as the working fluid. The flow in the first passage is radial outward, after the 180 deg tip turn the flow is radial inward to the second passage, and after the 180 deg hub turn the flow is radial outward to the third passage. The effects of rotation on the heat transfer coefficients were investigated at rotation numbers up to 0.6 and Reynolds numbers from 30,000 to 70,000. Heat transfer coefficients were measured using the thermocouples-copper-plate-heater regional average method. Heat transfer results are obtained over a wide range of Reynolds numbers and rotation numbers. An increase in heat transfer rates due to rotation is observed in radially outward passes; a reduction in heat transfer rate is observed in the radially inward pass. Regional heat transfer coefficients are correlated with Reynolds numbers for nonrotation and with rotation numbers for rotating condition, respectively. The results can be useful for understanding real rotor blade coolant passage heat transfer under low Mach number, medium–high Reynolds number, and high rotation number conditions.


Author(s):  
Joao Vieira ◽  
John Coull ◽  
Peter Ireland ◽  
Eduardo Romero

Abstract High pressure turbine blade tips are critical for gas turbine performance and are sensitive to small geometric variations. For this reason, it is increasingly important for experiments and simulations to consider real geometry features. One commonly absent detail is the presence of welding beads on the cavity of the blade tip, which are an inherent by-product of the blade manufacturing process. This paper therefore investigates how such welds affect the Nusselt number, film cooling effectiveness and aerodynamic performance. Measurements are performed on a linear cascade of high pressure turbine blades at engine realistic Mach and Reynolds numbers. Two cooled blade tip geometries were tested: a baseline squealer geometry without welding beads, and a case with representative welding beads added to the tip cavity. Combinations of two tip gaps and several coolant mass flow rates were analysed. Pressure sensitive paint was used to measure the adiabatic film cooling effectiveness on the tip, which is supplemented by heat transfer coefficient measurements obtained via infrared thermography. Drawing from all of this data, it is shown that the weld beads have a generally detrimental impact on thermal performance, but with local variations. Aerodynamic loss measured downstream of the cascade is shown to be largely insensitive to the weld beads.


Sign in / Sign up

Export Citation Format

Share Document