Extended Fatigue Life by Shot Peening Process via Shakedown Analysis

2008 ◽  
Vol 75 (1) ◽  
Author(s):  
Jehuda Tirosh

The goal of this work was to quantify the improvement in the fatigue limit of solid structures which have undergone shot peening (SP) by small rigid particles. The work was based on Melan’s shakedown theorem for estimating the allowable safe stress amplitude (in a lower bound sense) of structures that otherwise might fail during fatigue loading by plastic strain accumulation (ratcheting). Aided by geometrical simplification (mainly by assuming that the residual craters of the peened surfaces are shallow and flat), the benefit of SP to increase fatigue limits of structures subjected to fluctuating loads was quantified and compared to experiments. As a by-product, the long-time accepted empirical formulas for decreasing fatigue limits due to an increase of the loading mean tensile stress (Gerber, 1874, Z Bayer Arch Ingenieur-Vereins, 6, pp. 101–110; Goodman, 1899, Mechanics Applied to Engineering, Longmans, Green, London) have received a theoretical justification from shakedown analysis. The suggested empiricism-free solution traces well Gerber and Goodman’s empirical formulas in the positive mean stress regime of the applied load. It has a notable advantage that it also smoothly extends to the negative mean-stress regime (akin to the superimposed residual compressive stresses in a thin layer generated by the SP process) not covered hitherto by formulas. This shakedown analysis manifests the merit of shot peening processes by showing specifically the existence of larger range of fatigue-safe stress amplitudes (or equivalently, exhibiting a prolonged fatigue life) before disruption by ratcheting. Various fatigue experiments which were found in the open literature, are in a satisfactory agreement with the theoretical analysis.

2014 ◽  
Vol 891-892 ◽  
pp. 1329-1334
Author(s):  
Soumaya Bradaï ◽  
Cédric Gourdin ◽  
Stephan Courtin ◽  
Jean Christophe Leroux ◽  
Catherine Gardin

Fatigue lifetime assessment is essential in the design of structures. Under-estimated predictions may result in unnecessary in-service inspections. Conversely, over-estimated predictions may have serious consequences on the integrity of structures. In some nuclear power plant components, the fatigue loading may be equibiaxial because of thermal fatigue. So the potential impact of multiaxial loading on the fatigue life of components is a major concern. Meanwhile, few experimental data are available on austenitic stainless steels. It is essential to improve the fatigue assessment methodologies to take into account the potential equibiaxial fatigue damage. Hence this requires obtaining experimental data on the considered material and with a strain tensor in equibiaxial tension. This paper describes an experimental program on austenitic stainless steel carried out on the new experimental fatigue device FABIME2 developed in the LISN in collaboration with EDF and AREVA. This new device allows accurate quantification of the effects of both equibiaxial strain state as well as structural parameters (such as mean stress) on the fatigue life. It also allows studying the complexity of combinations between potential detrimental effects like surface roughness, mean stress and equibiaxial loading. Different load ratios can be tested by adjusting the loading conditions. A Finite Element Modeling is performed in order to obtain a precise description of the strain state in the specimen. The results of the on-going test campaign will be presented.


2016 ◽  
Vol 250 ◽  
pp. 50-55
Author(s):  
Krzysztof Kluger ◽  
Roland Pawliczek

The paper presents comparison of the mathematical models for fatigue life calculations including influence of the mean load value. Several model based on stress analysis on the critical plane and energy density parameter were investigated. In this paper three types of materials were tested and subjected to bending, torsion and combination of bending with torsion loading with the participation of mean value of the load. It was found, that the best fatigue life estimations obtained by models taking into account changes of the material behavior under fatigue loading related to the specified numbers of cycles of the load.


2016 ◽  
Vol 853 ◽  
pp. 246-250 ◽  
Author(s):  
Tao Fang ◽  
Qian Hua Kan ◽  
Guo Zheng Kang ◽  
Wen Yi Yan

Experiments on U75V rail steel were carried out to investigate the cyclic feature, ratcheting behavior and low-cycle fatigue under both strain- and stress-controlled loadings at room temperature. It was found that U75V rail steel shows strain amplitude dependent cyclic softening feature, i.e., the responded stress amplitude under strain-controlled decreases with the increasing number of cycles and reaches a stable value after about 20th cycle. Ratcheting strain increases with an increasing stress amplitude and mean stress, except for stress ratio, and the ratcheting strain in failure also increases with an increasing stress amplitude, mean stress and stress ratio. The low-cycle fatigue lives under cyclic straining decrease linearly with an increasing strain amplitude, the fatigue lives under cyclic stressing decrease with an increasing mean stress except for zero mean stress, and decrease with an increasing stress amplitude. Ratcheting behavior with a high mean stress reduces fatigue life of rail steel by comparing fatigue lives under stress cycling with those under strain cycling. Research findings are helpful to evaluate fatigue life of U75V rail steel in the railways with passenger and freight traffic.


2021 ◽  
pp. 136943322199249
Author(s):  
Xing Li ◽  
Jiwen Zhang ◽  
Jun Cheng

This paper presents fatigue behaviors and the stiffness degradation law of concrete continuous beams with external prestressed carbon fiber-reinforced polymer (CFRP) tendons. Three specimens were tested under fatigue loading, and the influence of different load levels on the stiffness degradation and fatigue life were studied, and it was found that the stiffness degradation of three test specimens exhibited a three-stage change rule, namely rapid decrease, stable degradation, and sharp decline, but there are obvious differences in the rate and amplitude of stiffness degradation. The load level has a significant influence on the fatigue life of the test specimens. An analytical model with load level considered was proposed to calculate the residual stiffness and predict the stiffness degradation, which is in good agreement with the test results. The model of stiffness degradation presents a possible solution for practical engineering applications of concrete continuous beams with externally prestressed CFRP tendons subjected to different fatigue loadings.


2006 ◽  
Vol 514-516 ◽  
pp. 804-809
Author(s):  
S. Gao ◽  
Ewald Werner

The forging die material, a high strength steel designated W513 is considered in this paper. A fatigue damage model, based on thermodynamics and continuum damage mechanics, is constructed in which both the previous damage and the loading sequence are considered. The unknown material parameters in the model are identified from low cycle fatigue tests. Damage evolution under multi-level fatigue loading is investigated. The results show that the fatigue life is closely related to the loading sequence. The fatigue life of the materials with low fatigue loading first followed by high fatigue loading is longer than that for the reversed loading sequence.


1967 ◽  
Vol 182 (1) ◽  
pp. 657-684 ◽  
Author(s):  
J. Spence ◽  
W. B. Carlson

Nozzles in cylindrical vessels have been of special interest to designers for some time and have offered a field of activity for many research workers. This paper presents some static and fatigue tests on five designs of full size pressure vessel nozzles manufactured in two materials. Supporting and other published work is reviewed showing that on the basis of the same maximum stress mild steel vessels give the same fatigue life as low alloy vessels. When compared on the basis of current codes it is shown that mild steel vessels may have five to ten times the fatigue life of low alloy vessels unless special precautions are taken.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
H. S. Ho ◽  
D. L. Li ◽  
E. L. Zhang ◽  
P. H. Niu

The present study is conducted with a dual-aim: firstly, to examine the effect of several single shot peening conditions on the subsurface layer properties and fatigue performance of the case-hardened 18CrNiMo7-6 steel, and secondly, to propose an optimized peening condition for improved fatigue performance. By carrying out the subsurface integrity analysis and fatigue testing, the underlying relationships among the peening process, subsurface layer property and fatigue performance are investigated, the way peening conditions affect the fatigue life and its associated scatter for the case-hardened 18CrNiMo7-6 steel is quantitatively assessed. The in-depth study shows that dual peening can be an optimized solution, for it is able to produce a subsurface layer with enhanced properties and eventually gain a significant improvement in fatigue performance.


Author(s):  
Takashi Ogata

Polycrystalline conventional casting (CC) and directionally solidified (DS) Ni base superalloys are widely used as gas turbine blade materials. It was reported that the surface of a gas turbine blade is subjected to a biaxial tensile-compressive fatigue loading during a start-stop operation, based on finite element stress analysis results. It is necessary to establish the life prediction method of these superalloys under biaxial fatigue loading for reliable operations. In this study, the in-plane biaxial fatigue tests with different phases of x and y directional strain cycles were conducted on both CC and DS Ni base superalloys (IN738LC and GTD111DS) at high temperatures. The strain ratio ϕ was defined as the ratio between the x and y directional strains at 1/4 cycle and was varied from 1 to −1. In ϕ=1 and −1. The main cracks propagated in both the x and y directions in the CC superalloy. On the other hand, the main cracks of the DS superalloy propagated only in the x direction, indicating that the failure resistance in the solidified direction is weaker than that in the direction normal to the solidified direction. Although the biaxial fatigue life of the CC superalloy was correlated with the conventional Mises equivalent strain range, that of the DS superalloy depended on ϕ. The new biaxial fatigue life criterion, equivalent normal strain range for the DS superalloy was derived from the iso-fatigue life curve on a principal strain plane defined in this study. Fatigue life of the DS superalloy was correlated with the equivalent normal strain range. Fatigue life of the DS superalloy under equibiaxial fatigue loading was significantly reduced by introducing compressive strain hold dwell. Life prediction under equibiaxial fatigue loading with the compressive strain hold was successfully made by the nonlinear damage accumulation model. This suggests that the proposed method can be applied to life prediction of the gas turbine DS blades, which are subjected to biaxial fatigue loading during operation.


Sign in / Sign up

Export Citation Format

Share Document