Modeling Stresses of Contacts in Wire Saw Slicing of Polycrystalline and Crystalline Ingots: Application to Silicon Wafer Production

1998 ◽  
Vol 120 (2) ◽  
pp. 123-128 ◽  
Author(s):  
J. Li ◽  
I. Kao ◽  
V. Prasad

Wire saw slicing is a cost effective technology with high surface quality for slicing large diameter silicon wafers. Though wire saws have been deployed to cut polycrystalline and single crystal silicon ingot since the early 1990s, very little is known about the fundamental cutting process. We investigate this manufacturing process and propose a contact stress model of wire saw slicing that illustrates the interactions among the wire, ingot, and abrasives (e.g., SiC) carried by the slurry. Stresses created by wire saw slicing silicon wafers are analyzed in this paper. During the cutting process, the wire moves at high speed (5–15 m/s) with respect to the silicon ingot. The abrasives in the slurry are lose third-body particles caught between the wire and ingot at the contact surface. The forces applied by the wire carry the abrasive particles and cause them to roll on the surface and at the same time to be constrained to indent the surface. Such rolling-indenting interactions result in the formation of isolated chips and surface cracks. The cracks and discontinuity on the surface also cause high stress concentration. As a result, the material is cut and removed. The stress fields of a single circular cone of the abrasive particle indenting on silicon crystal with normal and tangential forces can be calculated and analyzed from the modeling equations and boundary conditions. The stresses are expressed with dimensionless stress measures, as functions of normalized geometric parameters. The results show that the maximum normal stress occurs at the indentation point, while the maximum shear stress (σzx) occurs below the surface of contact, as expected. Such subsurface shear facilitates the peeling effects of the silicon cracks. Both the normal and tangential forces applied at the contacts are incorporated in the model. The model is very effective in explaining and predicting the behaviors and distributions of stresses during the cutting process, and can be used to determine the optimal geometry of the abrasive particles in the rolling-indenting process.

2013 ◽  
Vol 481 ◽  
pp. 153-157
Author(s):  
Chun Yan Yao ◽  
Zong Hua Xu ◽  
Wei Zhang ◽  
Qiao Fang Zhang ◽  
Wei Peng

Heat generated during wire saw slicing can cause silicon temperature raise and make silicon wafer warpage, especially for larger silicon wafers. In order to study the wire saw effect on silicon temperature during slicing process, three kinds of wire saw, mainly semi-fixed abrasive wire saw and traditional wire saw, are applied for slicing silicon ingot. In this paper, the thermocouple is used to measure the temperature of the silicon during wire saw slicing. The experiment results show that the temperature of the silicon increases along with the wire saw working direction and reaches maximum value near the outlet position of silicon. The temperature of the silicon sliced by semi-fixed abrasive wire saw is lower than that sliced by traditional wire saw.


1994 ◽  
Vol 07 (04) ◽  
pp. 180-182
Author(s):  
N. Gofton ◽  
Joanne Cockshutt

The AO wire passer can be used as an effective guide for passage of obstetrical saw wire for osteotomy. Use of the wire saw and passer reduces soft tissue trauma by minimizing tissue dissection, and promoting positioning of the saw in close contact with the bone.


Author(s):  
Adam Barylski ◽  
Mariusz Deja

Silicon wafers are the most widely used substrates for fabricating integrated circuits. A sequence of processes is needed to turn a silicon ingot into silicon wafers. One of the processes is flattening by lapping or by grinding to achieve a high degree of flatness and parallelism of the wafer [1, 2, 3]. Lapping can effectively remove or reduce the waviness induced by preceding operations [2, 4]. The main aim of this paper is to compare the simulation results with lapping experimental data obtained from the Polish producer of silicon wafers, the company Cemat Silicon from Warsaw (www.cematsil.com). Proposed model is going to be implemented by this company for the tool wear prediction. Proposed model can be applied for lapping or grinding with single or double-disc lapping kinematics [5, 6, 7]. Geometrical and kinematical relations with the simulations are presented in the work. Generated results for given workpiece diameter and for different kinematical parameters are studied using models programmed in the Matlab environment.


Author(s):  
Zheng-Yan Yang ◽  
Xiao-Ming Zhang ◽  
Guang-Chao Nie ◽  
Dong Zhang ◽  
Han Ding

Abstract This study proposes a comprehensive experiment-based method to determine stress field and slip lines in metal cutting process. The chip geometry and workpiece's strain and strain rate fields are determined using an in-situ imaging technique. The two-dimensional (2D) heat transfer problem for the steady-state cutting process is solved to derive the cutting temperature, and the flow stresses of work material in the main deformation zone are calculated based on the plasticity theory. Furthermore, the stress field is comprehensively determined to satisfy the stress equilibrium, friction law along the tool-chip interface, and traction-free boundary condition along the uncut chip surface. In addition, slip lines in the main deformation zone are derived according to the direction of maximum shear stress without the assumption of perfect rigid-plastic material. The proposed method is validated by comparing the cutting forces calculated based on the obtained stress field with the experimentally measurements.


1977 ◽  
Vol 18 (78) ◽  
pp. 143-144 ◽  
Author(s):  
T.E. Osterkamp

Abstract A diamond wire saw was modified for cutting thin sections of frozen soil and suitable operating conditions were determined experimentally. It was found that a lubricated wire, 0.34 mm in diameter, operaied at cutting velocities of 100-300 mm s-1 and cutting forces 0.02-0.1 kg produced smooth cut surfaces un thin sections 0.4-0.5 mm in thickness. The; temperature and wire size were not critical operating parameters and the wire tensions recommended by the manufacturer were satisfactory. A method of mounting the thin sections is also described.


2017 ◽  
Vol 2017.30 (0) ◽  
pp. 172
Author(s):  
Takayuki Kihara ◽  
Keiichi Takanashi ◽  
Makoto Funayama ◽  
Yuki Nakashima

2007 ◽  
Vol 359-360 ◽  
pp. 450-454 ◽  
Author(s):  
Yu Fei Gao ◽  
Pei Qi Ge ◽  
Zhi Jian Hou

The physical model of fixed-abrasive diamond wire-sawing monocrystalline silicon was founded to analyze the elastic deformation of the wire, supposing that every grit was connected to the surface of the wire by a spring. Ignoring lateral vibration of the wire, the geometrical model of wire-sawing was founded; the average cut depth of single grit was calculated theoretically. Based the indentation fracture mechanics and investigations on brittle-ductile transition of machining monocrystalline silicon, the removal mechanism and surface formation was studied theoretically. It shows that in the case of wire-sawing velocity of 10m/s or higher, infeed velocity of 0.20mm/s and diamond grain size of 64μm or smaller, the chip formation and material removal is in a brittle regime mainly, but the silicon wafer surface formation is sawed in a ductile regime. The size of the abrasives, the wire-saw velocity and infeed velocity can influence the sawing process obviously.


2009 ◽  
Vol 416 ◽  
pp. 311-315 ◽  
Author(s):  
Pei Qi Ge ◽  
Yu Fei Gao ◽  
Shao Jie Li ◽  
Zhi Jian Hou

Development of high performance diamond impregnated wire is the key of application for fixed-abrasive wire sawing technology. In this paper, some experimental studies were done for development of electroplated diamond wire saw by employing the bright nickel bath. The wire saw electroplating process was developed, the effects of cathode current density and time at tack-on stage on diamond grits density and adhesion between saw matrix and plating coating were discussed. The wire saw cutting experiments were carried out for analysis the used wire wear using the scanning electron microscope (SEM). The experimental results show the optimum tack-on current density to obtain the wire saw with good abrasive distribution and adhesion is 1.5~2.0A/dm2, and the time of pre-plating, tack-on and buildup is 6, 8~10 and 18min in turn. Diamond wire saw wear includes coating wear and grain-abrasion, and the primary wear form is grits pulled-out.


2009 ◽  
Vol 416 ◽  
pp. 321-326 ◽  
Author(s):  
Pei Qi Ge ◽  
Zhi Jian Hou ◽  
Shao Jie Li

Because its advantages of lower manufacture cost and higher slicing quality, the resin bonded diamond wire saw is supposed to be used widely in the future for slicing hard-brittle materials such as silicon crystal. In this paper, based on the research of the resin bonded diamond wire saw manufacturing technology and slicing process, we select Φ0.2mm SWPB piano string as core wire, 20-30m (800#) diamond grain as abrasive, liquid phenolic resin mixed with epoxy resin as adhesive, the nanometer powders as additive to improve the adhesive holding strength of abrasive grains and heat resistance. By orthogonal experiment, we find the resin bonded diamond wire saw has optimizing performance as the additives is 10% in adhesive, the epoxy resin is 30% in resin, the diamond is 50% in whole mixed material. Slicing experiments proves that the resin bonded diamond wire saw manufactured in this study has better slicing performance. The failure forms of the resin bonded diamond wire saw are wear out of resin adhesive, falling off of diamond grains and the partial peeling off of the resin bond.


Sign in / Sign up

Export Citation Format

Share Document