Estimation of the Thermodynamic Properties of Unbranched Hydrocarbons

1999 ◽  
Vol 121 (1) ◽  
pp. 45-50 ◽  
Author(s):  
H. He ◽  
M. Metghalchi ◽  
J. C. Keck

A simple model has been developed to estimate the sensible thermodynamic properties such as Gibbs free energy, enthalpy, heat capacity, and entropy of unbranched hydrocarbons over a wide range of temperatures. The model is based on statistical thermodynamic expressions incorporating translational, rotational, and vibrational motions of the atoms. A relatively small number of parameters are needed to calculate the thermodynamic properties of a wide range of molecules. The calculated results are in good agreement with the available experimental data for unbranched hydrocarbons. The model can be used to make estimates for molecules whose properties have not been measured and is simple enough to be easily programmed as a subroutine for on-line kinetic calculations.

2000 ◽  
Vol 122 (3) ◽  
pp. 147-152 ◽  
Author(s):  
Hui He ◽  
Mohamad Metghalchi ◽  
James C. Keck

A simple model has been developed to estimate the sensible thermodynamic properties such as Gibbs free energy, enthalpy, heat capacity, and entropy of hydrocarbons over a wide range of temperatures with special attention to the branched molecules. The model is based on statistical thermodynamic expressions incorporating translational, rotational and vibrational motions of the atoms. A method to determine the number of degrees of freedom for different motion modes (bending and torsion) has been established. Branched rotational groups, such as CH3 and OH, have been considered. A modification of the characteristic temperatures for different motion mode has been made which improves the agreement with the exact values for simple cases. The properties of branched alkanes up to 2,3,4,-trimthylpentane have been calculated and the results are in good agreement with the experimental data. A relatively small number of parameters are needed in this model to estimate the sensible thermodynamic properties of a wide range of species. The model may also be used to estimate the properties of molecules and their isomers, which have not been measured, and is simple enough to be easily programmed as a subroutine for on-line kinetic calculations. [S0195-0738(00)00902-X]


1999 ◽  
Author(s):  
Hui He ◽  
Mohamad Metghalchi ◽  
James C. Keck

Abstract A simple model has been developed to estimate the sensible thermodynamic properties such as Gibbs free energy, enthalpy, heat capacity, and entropy of hydrocarbons over a wide range of temperatures with special attention to the branched molecules. The model is based on statistical thermodynamic expressions incorporating translational, rotational and vibrational motions of the atoms. A method to determine the number of degrees of freedom for different motion modes (bending and torsion) has been established. Branched rotational groups, such as CH3 and OH, have been considered. A modification of the characteristic temperatures for different motion mode has been made which improves the agreement with the exact values for simple cases. The properties of branched alkanes up to 2,3,4-Trimthylpentane have been calculated and the results are in good agreement with the experimental data. A relatively small number of parameters are needed in this model to estimate the sensible thermodynamic properties of a wide range of species. The model may also be used to estimate the properties of molecules and their isomers, which have not been measured, and is simple enough to be easily programmed as a subroutine for on-line kinetic calculations.


Author(s):  
Hellismar W. da Silva ◽  
Renato S. Rodovalho ◽  
Marya F. Velasco ◽  
Camila F. Silva ◽  
Luís S. R. Vale

ABSTRACT The objective of this study was to determine and model the drying kinetics of 'Cabacinha' pepper fruits at different temperatures of the drying air, as well as obtain the thermodynamic properties involved in the drying process of the product. Drying was carried out under controlled conductions of temperature (60, 70, 80, 90 and 100 °C) using three samples of 130 g of fruit, which were weighed periodically until constant mass. The experimental data were adjusted to different mathematical models often used in the representation of fruit drying. Effective diffusion coefficients, calculated from the mathematical model of liquid diffusion, were used to obtain activation energy, enthalpy, entropy and Gibbs free energy. The Midilli model showed the best fit to the experimental data of drying of 'Cabacinha' pepper fruits. The increase in drying temperature promoted an increase in water removal rate, effective diffusion coefficient and Gibbs free energy, besides a reduction in fruit drying time and in the values of entropy and enthalpy. The activation energy for the drying of pepper fruits was 36.09 kJ mol-1.


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Guangying Yu ◽  
Hameed Metghalchi ◽  
Omid Askari ◽  
Ziyu Wang

The rate-controlled constrained-equilibrium (RCCE), a model order reduction method, has been further developed to simulate the combustion of propane/oxygen mixture diluted with nitrogen or argon. The RCCE method assumes that the nonequilibrium states of a system can be described by a sequence of constrained-equilibrium states subject to a small number of constraints. The developed new RCCE approach is applied to the oxidation of propane in a constant volume, constant internal energy system over a wide range of initial temperatures and pressures. The USC-Mech II (109 species and 781 reactions, without nitrogen chemistry) is chosen as chemical kinetic mechanism for propane oxidation for both detailed kinetic model (DKM) and RCCE method. The derivation for constraints of propane/oxygen mixture starts from the eight universal constraints for carbon-fuel oxidation. The universal constraints are the elements (C, H, O), number of moles, free valence, free oxygen, fuel, and fuel radicals. The full set of constraints contains eight universal constraints and seven additional constraints. The results of RCCE method are compared with the results of DKM to verify the effectiveness of constraints and the efficiency of RCCE. The RCCE results show good agreement with DKM results under different initial temperature and pressures, and RCCE also reduces at least 60% CPU time. Further validation is made by comparing the experimental data; RCCE shows good agreement with shock tube experimental data.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Omid Askari

Chemical composition and thermodynamics properties of different thermal plasmas are calculated in a wide range of temperatures (300–100,000 K) and pressures (10−6–100 atm). The calculation is performed in dissociation and ionization temperature ranges using statistical thermodynamic modeling. The thermodynamic properties considered in this study are enthalpy, entropy, Gibbs free energy, specific heat at constant pressure, specific heat ratio, speed of sound, mean molar mass, and degree of ionization. The calculations have been done for seven pure plasmas such as hydrogen, helium, carbon, nitrogen, oxygen, neon, and argon. In this study, the Debye–Huckel cutoff criterion in conjunction with the Griem’s self-consistent model is applied for terminating the electronic partition function series and to calculate the reduction of the ionization potential. The Rydberg and Ritz extrapolation laws have been used for energy levels which are not observed in tabulated data. Two different methods called complete chemical equilibrium and progressive methods are presented to find the composition of available species. The calculated pure plasma properties are then presented as functions of temperature and pressure, in terms of a new set of thermodynamically self-consistent correlations for efficient use in computational fluid dynamic (CFD) simulations. The results have been shown excellent agreement with literature. The results from pure plasmas as a reliable reference source in conjunction with an alternative method are then used to calculate the thermodynamic properties of any arbitrary plasma mixtures (mixed plasmas) having elemental atoms of H, He, C, N, O, Ne, and Ar in their chemical structure.


2005 ◽  
Vol 19 (07n09) ◽  
pp. 1205-1208 ◽  
Author(s):  
A. F. BAKUZIS ◽  
KEZHENG CHEN ◽  
WEILI LUO ◽  
HONGZHANG ZHUANG

We have studied magnetic force on sperical magnetic fluid samples with a wide range of concentrations by pendulum method. The results demonstrate good agreement with Kelvin body force and show that other force expressions clearly deviate from experimental data for large sussceptibility values.


1984 ◽  
Vol 62 (8) ◽  
pp. 796-802 ◽  
Author(s):  
Maryse Mondat ◽  
A. Georgallas ◽  
D. A. Pink ◽  
M. J. Zuckermann

A theoretical model is presented with the intention of describing lateral phase separations in binary lipid mixtures in which the acyl chains of the components differ in their length. The model includes explicitly interactions between the acyl chains and between polar heads of the lipid molecules. Phase diagrams and thermodynamic properties of binary lipid mixtures were calculated using a wide range of interaction parameters. It is shown that the occurrence of immiscibility in the gel phase is related to the interactions between the polar heads of the lipid molecules. The calculated results for binary lipid mixtures are compared with the available experimental data. In particular, the calculated specific heat for dilauroyl phosphatidylcholine – distearoyl phosphatidylcholine is in reasonable agreement with experimental results obtained from differential scanning calorimetry measurements.


2012 ◽  
Vol 9 (4) ◽  
pp. 616-622
Author(s):  
Baghdad Science Journal

In This research a Spectroscopic complement and Thermodynamic properties for molecule PO2 were studied . That included a calculation of potential energy . From the curve of total energy for molecule at equilibrium distance , for bond (P-O), the degenerated of bond energy was (4.332eV) instate of the vibration modes of ( PO2 ) molecule and frequency that was found active in IR spectra because variable inpolarization and dipole moment for molecule. Also we calculate some thermodynamic parameters of ( PO2 ) such as heat of formation , enthalpy , heat Of capacity , entropy and gibb's free energy Were ( -54.16 kcal/mol , 2366.45 kcal/mol , 10.06 kcal /k/mol , 59.52 kcal /k /mol, -15370.51 kcal / mol ) respectively under condition of room temperature and atmosphere pressure ( 298 k , 1 atm.). We calculate there parameters at various temperature from ( 100 – 3000 ) K . It was found that the obtainded results were in a good agreement with previous experimental facts.


1998 ◽  
Vol 16 (2) ◽  
pp. 67-75 ◽  
Author(s):  
Wen-Tien Tsai ◽  
Ching-Yuan Chang ◽  
Chih-Yin Ho

Of the major replacements for chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs) are now accepted as being prime contributors to stratospheric ozone depletion. As a consequence, the development of adsorbents capable of adsorbing and recovering specific HCFCs has received great attention. This paper describes an investigation of the adsorption equilibrium of 1, 1-dichloro-1-fluoroethane (HCFC-141b) vapour on a commercial hydrophobic zeolite. The corresponding Henry, Freundlich and Dubinin–Radushkevich (D–R) equilibrium isotherms have been determined and found to correlate well with the experimental data. Based on the Henry adsorption isotherms obtained at 283, 303 and 313 K. thermodynamic properties such as the enthalpy, free energy and entropy of adsorption have been computed for the adsorption of HCFC-141b vapour on the adsorbent. The results obtained could be useful in the application of HCFC adsorption on the hydrophobic zeolite studied.


1982 ◽  
Vol 28 (98) ◽  
pp. 29-34 ◽  
Author(s):  
M. Nakawo ◽  
G.J. Young

AbstractA simple model suggests that the ablation under a debris layer could be estimated from meteorological variables if the surface temperature data of the layer are available. This method was tested by analyzing the data obtained from experiments with artificial debris layers. Fairly good agreement was obtained between the estimated and the experimental data.


Sign in / Sign up

Export Citation Format

Share Document