Reciprocal Variable Feedback: Induced Sensing for Nonlinear Systems Design and Control

1998 ◽  
Vol 120 (2) ◽  
pp. 157-163
Author(s):  
Aristides Gogoussis ◽  
Max Donath

System performance can be significantly improved when both the design of the plant and of the controller are considered concurrently. Control theory can be applied to a broad variety of systems, including those that are physical in nature and many that are not. Despite the generality of control theory, there are many situations in which opportunities are missed for using less conservative control laws and simpler overall implementations. This is due to the use of formulations that do not explicitly reveal the existence of intrinsic information pertaining to the particular domain of application. Such is the case with many physical systems. However, the various constraints associated with physical reality (in the form of principles, laws, etc.) open up several possibilities which can be exploited for system design and control. In this paper, we propose the Reciprocal Variable Feedback principle as a means for facilitating the control of plants with complicated nonlinear dynamics in the presence of parameter and/or structural uncertainty. The RVF principle exploits the effort-flow relationships associated with power interactions in order to assist in the design and control of physical processes. This is accomplished by using appropriate sensors instead of computation based on models (e.g., feedback linearization) and can be implemented within many physical domains. A motion control example is used to provide insight into the nature of the principle. It is expected that in the future, additional principles will be identified and introduced for integrating design with the control of dynamical systems.

Information security can be efficiently provided by the sound structured information and a set of specialized experts in the field of IT and CPS. The interconnection among the systems in the CPS imposes a new challenge in providing security to CPS. A concise study of CPS security is given in this chapter. The problem of secure control systems is also indentified and defined. The way the information security and control theory guards the system is explored. The security of CPSs can be enhanced using a particular set of challenges, which are also described later in this chapter. The resistance to malicious events is strengthening as cyber physical systems are part of critical structures. The CPSs are time sensitive in nature, unlike the distributed system where a little amount of delay is acceptable.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4762 ◽  
Author(s):  
Ahmed Saad ◽  
Samy Faddel ◽  
Osama Mohammed

With the emergence of distributed energy resources (DERs), with their associated communication and control complexities, there is a need for an efficient platform that can digest all the incoming data and ensure the reliable operation of the power system. The digital twin (DT) is a new concept that can unleash tremendous opportunities and can be used at the different control and security levels of power systems. This paper provides a methodology for the modelling of the implementation of energy cyber-physical systems (ECPSs) that can be used for multiple applications. Two DT types are introduced to cover the high-bandwidth and the low-bandwidth applications that need centric oversight decision making. The concept of the digital twin is validated and tested using Amazon Web Services (AWS) as a cloud host that can incorporate physical and data models as well as being able to receive live measurements from the different actual power and control entities. The experimental results demonstrate the feasibility of the real-time implementation of the DT for the ECPS based on internet of things (IoT) and cloud computing technologies. The normalized mean-square error for the low-bandwidth DT case was 3.7%. In the case of a high-bandwidth DT, the proposed method showed superior performance in reconstructing the voltage estimates, with 98.2% accuracy from only the controllers’ states.


Author(s):  
Khershed P. Cooper

The technology of direct digital additive manufacturing (D2AM) has received considerable attention in recent months. Several government agencies and commercial interests are planning to explore D2AM to find solutions to manufacturing problems. The attraction of D2AM is the benefit of rapidly producing without fixtures or tools or human intervention customized objects of complex geometry not possible by traditional methods. The interest in D2AM ranges from fabrication of critical, high value aerospace metallic components to fabrication of objects having an organic look or as nature would have intendedi. For D2AM to be commercially accepted, it must reliably and predictably make products. It must achieve consistency in reproducibility across relevant D2AM methods. The Office of Naval Research (ONR) has launched a new basic research program, known as Cyber-enabled Manufacturing Systems (CeMS). The long-range goal of the program is to achieve the level of control over D2AM processes for industrial acceptance and wide-use of the technology. This program will develop measuring, sensing and control models and algorithms for D2AM by harnessing principles underpinning cyber-physical systems (CPS) and fundamentals of physical processes. This paper describes the challenges facing D2AM and the CeMS program goals to meet them.


2021 ◽  
Vol 10 (3) ◽  
pp. 52
Author(s):  
Piergiuseppe Di Marco ◽  
Pangun Park

Recent advances in wireless networking, sensing, computing, and control are revolutionizing how physical systems interact with information and physical processes such as Cyber-Physical Systems (CPS), Internet of Things (IoT), and Tactile Internet. [...]


2014 ◽  
Vol 484-485 ◽  
pp. 427-430
Author(s):  
Zhe Jun Kuang ◽  
Liang Hu ◽  
Chen Zhang

Cyber-physical systems (CPS) are complex distributed heterogeneous systems which integrating cyber and physical processes by computation, communication and control. During interaction between cyber and physical world, the traditional theories and applications has been difficult to satisfy real-time performance and efficient. Cyber-physical systems clearly have a role to play in developing a new theory of computer-mediated physical systems. The aim of this work is to analysis the features and relation technology of CPS that get better understanding for this new field. We summarized the research progresses from different perspectives such as modeling, classical tools and applications. Finally, the research challenges for CPS are in brief outlined.


Robotica ◽  
2018 ◽  
Vol 36 (4) ◽  
pp. 588-606 ◽  
Author(s):  
Mojtaba Eftekhari ◽  
Hossein Karimpour

SUMMARYThis paper presents a model-based controller consisting of a feedback linearization scheme and a state-dependent proportional derivative (PD) controller adapted to a parallel flight simulator Stewart mechanism. This parallel robot is considered to emulate motions of highly maneuverable aircrafts, which require well-trained pilots. The simulations are based upon a reduced-model prototype built in order to verify kinematic design aspects and control laws. Indeterminacies in the mass distribution of the system will generally affect model-based controllers, necessitating compensation or the employment of robust control methods. Through introducing the pilot's sensorial feedback of acceleration, the pilot's behavior in giving commands is emulated via an optimization process, which tunes the controller coefficients accordingly. Stability of the designed control system is guaranteed via the Lyapunov approach. To further explore the system through perilous flight scenarios, three pre-designed maneuvers are selected as test cases. It is expected that closed-loop control tasks in which a pilot tracks a target, while at the same time the controller rejects disturbances and adapts itself to the pilot's progressive skills, are ameliorated through this arrangement. Numerical results show that the proposed method is found robust in the training process in conditions of parameters indeterminacy.


Author(s):  
Constance Lare ◽  
Warren N. White

Abstract This paper questions whether the controller properties for a given rigid body mechanical system still apply as the given system is changed. As a first attempt in this investigation, the controller for the underactuated rotary pendulum is investigated as the system morphs into an underactuated inverted pendulum cart. As the limiting condition of the inverted pendulum cart is approached, the investigation allows the controller to also morph. The authors show that, as the pendulum base radius grows, the rotary pendulum equations of motion morph into the inverted pendulum cart dynamics. The paper presents necessary conditions for the successful morphing of the dynamic equations. The morphing process for the controller tests the idea whether the control law also satisfies the same continuum basis as the motion equations. The paper presents a framework for the class of controllers investigated for providing insight into when the controller morphing may be successful. This paper presents dimensionless quantities that render the equations of motion and controller for the inverted pendulum cart and rotary pendulum into dimensionless form. These dimensionless quantities allow comparison of controllers and systems that are not possible through simple inspection. This comparison ability is especially useful for quantifying the nonlinearities of a given system and controller compared to another system and controller having different parameter sizes, a comparison rarely seen in the control literature.


In IoT applications, physical systems have not only discrete behaviors but also continuous dynamics; the corresponding aspects of the information world are called IoT resources. IoT services monitor and control these resources to ensure specific properties such as controllability and stability. An approach is proposed here that links together IoT resources, events, and IoT services based on requirement specifications. IoT resources are explicitly modelled as stateful to express the evolution of their current attributes and states from their previous ones. Multiple actions are modelled by specifying the indirect effects and causalities of their actions, and the interactions between physical processes and information processes are orchestrated as the coordination of the IoT resources (i.e., coordinating stateful IoT resources as IoT services). At runtime, the issue of how to solve the glitch problem is discussed based on an event extraction method. Finally, an evaluation is performed as a proof of concept for this chapter.


2014 ◽  
Vol 543-547 ◽  
pp. 1567-1570 ◽  
Author(s):  
Juan Nie ◽  
Rui Zhi Sun ◽  
Xiao Hua Li

Cyber-Physical Systems (CPS) are integrations of computation with physical processes. This paper develops a precision agriculture architecture based on CPS technology, including three layers: the physical layer, the network layer and the decision layer. Every layer is analyzed in detail. This paper helps the exploration of CPS in precision agriculture.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Junhai Luo ◽  
Yijun Cai ◽  
Changping Zhong

Cyber-physical system (CPS) cooperates with physical processes, computing, communication, and control (3C) into multiple levels of information processing and operation management to streamline and fortify the operation of physical systems. Due to the unique characteristics, such as unpredictable node mobility, low node density, lack of global information and network intermittent connectivity, an algorithm for data forwarding in CPS is a considerably difficult and challenging problem, and there is no good solution to it in existing works. In this paper, we propose a fully-fledged data forwarding algorithm tailored to the CPS environment. The proposed protocol, called data forwarding based on Delaunay triangulation (DFDT), takes into account the computational geometry based on Delaunay triangulation to form a few triangle communities according to nodes’ connectivity. Data in a community are forwarded to other nodes once a node comes into this community to increase the data delivery ratio. DFDT achieves a good performance by data gathering and sending data to other nodes with higher probability of meeting the link. An extensive simulation has been performed to validate the analytical results and to show the effectiveness of our approach compared with the three existing popular data forwarding algorithms.


Sign in / Sign up

Export Citation Format

Share Document