Friction Identification Using Evolution Strategies and Robust Control of Positioning Tables

1999 ◽  
Vol 121 (4) ◽  
pp. 619-624 ◽  
Author(s):  
Seon-Woo Lee ◽  
Jong-Hwan Kim

This paper presents an identification technique using evolution strategies (ES) for an integrated friction model of a positioning table. The friction model is based on Karnopp’s friction-velocity model with the rising static friction and spring-like property. Using the (μ + λ)-ES, the system parameters are identified with the experimental input and output data. The proposed control law consists of a conventional linear feedback control input, a friction compensation term and a sliding control input. The proposed control scheme can guarantee the stability of the overall system, even in the presence of the external disturbances and the modeling error between the real friction and the identified model. Experiments on an positioning table, called X-Y table, demonstrate the effectiveness of the proposed identification and control schemes.

Author(s):  
Fei Ma ◽  
Yunjie Wu ◽  
Siqi Wang ◽  
Xiaofei Yang ◽  
Yueyang Hua

This paper presents an adaptive fixed-time guidance law for the three-dimensional interception guidance problem with impact angle constraints and control input saturation against a maneuvering target. First, a coupled guidance model formulated by the relative motion equation is established. On this basis, a fixed-time disturbance observer is employed to estimate the lumped disturbances. With the help of this estimation technique, the adaptive fixed-time sliding mode guidance law is designed to accomplish accurate interception. The stability of the closed-loop guidance system is proven by the Lyapunov method. Simulation results of different scenarios are executed to validate the effectiveness and superiority of the proposed guidance law.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Tingrui Liu

Vibration control of the blade section of a wind turbine is investigated based on the sliding mode proportional-integral (SM-PI) method, i.e., sliding mode control (SMC) based on a PI controller. The structure is modeled as a 2D pretwisted blade section integrated with calculation of structural damping, which is subjected to flap/lead-lag vibrations of instability. To facilitate the hardware implementation of the control algorithm, the SM-PI method is applied to realize tracking for limited displacements and velocities. The SM-PI algorithm is a novel SMC algorithm based on the nominal model. It combines the effectiveness of the sliding mode algorithm for disturbance control and the stability of PID control for practical engineering application. The SM-PI design and stability analysis are discussed, with superiority and robustness and convergency control demonstrated. An experimental platform based on human-computer interaction using OPC technology is implemented, with position tracking for displacement and control input signal illustrated. The platform verifies the feasibility and effectiveness of the SM-PI algorithm in solving practical engineering problems, with online tuning of PI parameters realized by applying OPC technology.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Valdemir Carrara ◽  
Hélio Koiti Kuga

The ever-increasing use of artificial satellites in both the study of terrestrial and space phenomena demands a search for increasingly accurate and reliable pointing systems. It is common nowadays to employ reaction wheels for attitude control that provide wide range of torque magnitude, high reliability, and little power consumption. However, the bearing friction causes the response of wheel to be nonlinear, which may compromise the stability and precision of the control system as a whole. This work presents a characterization of a typical reaction wheel of 0.65 Nms maximum angular momentum storage, in order to estimate their friction parameters. It used a friction model that takes into account the Coulomb friction, viscous friction, and static friction, according to the Stribeck formulation. The parameters were estimated by means of a nonlinear batch least squares procedure, from data raised experimentally. The results have shown wide agreement with the experimental data and were also close to a deterministic model, previously obtained for this wheel. This model was then employed in a Dynamic Model Compensator (DMC) control, which successfully reduced the attitude steady state error of an instrumented one-axis air-bearing table.


Author(s):  
Byungchan Jung ◽  
Henryk Flashner ◽  
Jill McNitt-Gray

A model of a wheeled platform that includes slipping is formulated. Slipping is modeled by adopting the LuGre friction model. This is a dynamic friction model that can reproduce realistic friction phenomena not present in static friction models. Using the backstepping approach, tracking controllers for non-slipping and slipping cases are developed and compared via simulation. The proposed control law is designed to be robust with respect to the change in system parameters such as the platform’s mass and moment inertia. Simulation results show good performance for point stabilization in specific destination postures, as well as for tracking.


2014 ◽  
Vol 620 ◽  
pp. 330-336
Author(s):  
Guang Rui Liu ◽  
Lan Fen Niu ◽  
Xin Tian

In order to study the elastic motion stability of flexible manipulator arm , to analyze the effect of the end position addition mass and rotary inertia on the elastic motion stability ,and to compute the maximum dynamic allowable payload , the physics model of a flexible manipulator arm is established , the differential equation of elastic motion of the flexible manipulator arm is solved using the method of the separation of time and space and the method of Laplace transformation , the dynamic model of flexible manipulator arm carried addition mass on its end position is established ,simplified and truncated using Lagrange equation . the state space expression and transfer function are established with the state variable and control input and output variable designated , the elastic motion stability rule is built upon and simplified using Roth criterion . The influence of the end position addition mass and articulation rotational inertia of flexible manipulator arm on its elastic motion stability is analyzed using the stability rule and the dynamic maximum allowable payload of flexible manipulator arm on its end position is computed in order to guarantee its elastic motion stability .


2014 ◽  
Vol 556-562 ◽  
pp. 4288-4292 ◽  
Author(s):  
Hsin Guan ◽  
Chun Guang Duan ◽  
Ping Ping Lu

With the development of the simulator and the increase of vehicle model simulation frequency, the ring tire models become the research focus. The ring model considers the physical characteristics of the tire, thus it can more accurately describe the tire force transmission. State Key Laboratory of Automotive Simulation and Control of Jilin University has developed a dynamic wheel model. This model takes the tire crown part as a rigid-ring and describes the elasticity of the tire by using six spring-dampers to connect the rigid-ring with the wheel rim. This paper focuses on the logical judgment of dynamic, static friction between tire and road. Based on the logical analysis, the tire forces at transient process are researched in order to avoid oscillation. Based on the C language to build simulation program, and embed it into complex vehicle model to simulate different conditions, the simulation results show that the vehicle can start smoothly.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Yaning Li ◽  
Yan Li ◽  
Yu Liu ◽  
Huidong Cheng

The application of pest management involves two thresholds when the chemical control and biological control are adopted, respectively. Our purpose is to provide an appropriate balance between the chemical control and biological control. Therefore, a Smith predator-prey system for integrated pest management is established in this paper. In this model, the intensity of implementation of biological control and chemical control depends linearly on the selected control level (threshold). Firstly, the existence and uniqueness of the order-one periodic solution (i.e., OOPS) are proved by means of the subsequent function method to confirm the feasibility of the biological and chemical control strategy of pest management. Secondly, the stability of system is proved by the limit method of the successor points’ sequences and the analogue of the Poincaré criterion. Moreover, an optimization strategy is formulated to reduce the total cost and obtain the best level of pest control. Finally, the numerical simulation of a specific model is performed.


Author(s):  
K. K. Bera ◽  
N. K. Chandiramani

Control of wind induced flutter of a bridge deck is studied using static output feedback. Servomotor actuated winglets provide the control forces. Deck and winglets are modeled as flat plates and their aerodynamic interaction is neglected. Self excited wind forces acting on deck and winglets are modeled using the Scanlan-Tomko model, with flat plate flutter derivatives obtained from Theodorsen functions. Rogers rational function approximation is used for time domain representation of wind forces in order to simplify the stability and control analyses. Control input to servomotors is based on direct feedback of vertical and torsional displacements of deck. Feedback gains that are constant, or varying with wind speed, are considered. Winglet rotations being restricted, flutter and divergence behavior is studied using system eigenvalues as well as responses. Results show that variable gain output feedback control provides the maximum increase in critical speed and also response attenuation, followed by control with gain scheduling. Control with constant gain is least effective.


Filomat ◽  
2018 ◽  
Vol 32 (11) ◽  
pp. 3779-3789 ◽  
Author(s):  
Yadong Liu ◽  
Wenjun Liu

In this paper, we study the dynamic behavior and control of the fractional-order nutrientphytoplankton-zooplankton system. First, we analyze the stability of the fractional-order nutrient-plankton system and get the critical stable value of fractional orders. Then, by applying the linear feedback control and Routh-Hurwitz criterion, we yield the sufficient conditions to stabilize the system to its equilibrium points. Finally, Under a modified fractional-order Adams-Bashforth-Monlton algorithm, we simulate the results respectively.


Author(s):  
Chen Hsieh ◽  
Jong-Ching Lin

Abstract A hub-beam system driven by a DC torque motor is studied. The motor is mounted on two ordinary ball bearings. Therefore, static friction is significant in this system. Traditionally, in modeling a flexible structure system, people treat static friction as a force equal but opposite to the applied force. Furthermore, there is no displacement once the system is stuck by the static friction. With this dead zone type static friction concept, it is theoretically very hard to control the line of sight (L. O. S) of the flexible beam with very high precision due to the residue deviation of hub angle and small vibration that remain when the system is stuck by static friction. However, based on a large amount of experimental results, more detail of static friction behavior has been revealed. It turns out that the static friction behavior can be summarized in several simple rules. A new static friction model that is described elsewhere is hence developed according to these rules. In this paper, this new friction model is applied to the hub beam system to describe the motion of the system during stiction phase. This micro dynamic stiction model is experimentally proved. It is shown that, after linearization, the stiction force is equivalent to a spring force with high stiffness together with a damping force. With the help of this new model, we successfully point the L. O. S. of the beam to the target with arc-second level precision.


Sign in / Sign up

Export Citation Format

Share Document