The Mechanical Behavior of Zinc During Machining

1995 ◽  
Vol 117 (2) ◽  
pp. 172-178 ◽  
Author(s):  
Robin Stevenson ◽  
David A. Stephenson

It is well known that a nonzero force is obtained when cutting forces measured at different feed rates but otherwise constant cutting conditions are extrapolated to zero feed rate. In the literature, this nonzero intercept has been attributed to a ploughing effect associated with the finite sharpness of the cutting tool. However, the standard extrapolation method does not account for other variables such as strain, strain rate and temperature which also vary with feed rate and influence the work material flow stress. In this paper, the apparent flow stresses measured in high and low speed machining tests on zinc are compared with the flow stresses measured in compression tests. The results show that the flow stress measured in cutting is consistent with that measured in compression when all deformation variables are properly accounted for and that, contrary to the results obtained using the extrapolation approach, the ploughing force is negligible.

1982 ◽  
Vol 196 (1) ◽  
pp. 141-148 ◽  
Author(s):  
G C I Lin ◽  
P Mathew ◽  
P L B Oxley ◽  
A R Watson

Using orthogonal (plane strain) machining theory together with certain simplifying assumptions based on experimental observations it is shown how the three components of cutting force in oblique machining can be predicted from a knowledge of the work material flow stress and thermal properties and the cutting conditions. A comparison of predicted and experimental cutting force results is given.


Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 880 ◽  
Author(s):  
Rongchuang Chen ◽  
Haifeng Xiao ◽  
Min Wang ◽  
Jianjun Li

In this work, hot compression experiments of 300M steel were performed at 900–1150 °C and 0.01–10 s−1. The relation of flow stress and microstructure evolution was analyzed. The intriguing finding was that at a lower strain rate (0.01 s−1), the flow stress curves were single-peaked, while at a higher strain rate (10 s−1), no peak occurred. Metallographic observation results revealed the phenomenon was because dynamic recrystallization was more complete at a lower strain rate. In situ compression tests were carried out to compare with the results by ex situ compression tests. Hot working maps representing the influences of strains, strain rates, and temperatures were established. It was found that the power dissipation coefficient was not only related to the recrystallized grain size but was also related to the volume fraction of recrystallized grains. The optimal hot working parameters were suggested. This work provides comprehensive understanding of the hot workability of 300M steel in thermal compression.


Author(s):  
Zhipeng Pan ◽  
Yixuan Feng ◽  
Xia Ji ◽  
Steven Y. Liang

Thermal mechanical loadings in machining process would promote material microstructure changes. The material microstructure evolution, such as grain size evolution and phase transformation could significantly influence the material flow stress behavior, which will directly affect the machining forces. An analytical model is proposed to predict cutting forces during the turning of AISI 4130 steel. The material dynamic recrystallization is considered through Johnson-Mehl-Avrami-Kolmogorov (JMAK) model. The explicit calculation of average grain size is provided in an analytical model. The grain size effect on the material flow stress is considered by introducing the Hall-Petch relation into a modified Johnson-Cook model. The cutting forces prediction are based on Oxley’s contact mechanics with consideration of mechanical and thermal loads. The model is validated by comparing the predicted machining forces with experimental measurements.


2017 ◽  
Vol 36 (7) ◽  
pp. 701-710
Author(s):  
Jun Cai ◽  
Kuaishe Wang ◽  
Xiaolu Zhang ◽  
Wen Wang

AbstractHigh temperature deformation behavior of BFe10-1-2 cupronickel alloy was investigated by means of isothermal compression tests in the temperature range of 1,023~1,273 K and strain rate range of 0.001~10 s–1. Based on orthogonal experiment and variance analysis, the significance of the effects of strain, strain rate and deformation temperature on the flow stress was evaluated. Thereafter, a constitutive equation was developed on the basis of the orthogonal analysis conclusions. Subsequently, standard statistical parameters were introduced to verify the validity of developed constitutive equation. The results indicated that the predicted flow stress values from the constitutive equation could track the experimental data of BFe10-1-2 cupronickel alloy under most deformation conditions.


Author(s):  
M. R. Vaziri ◽  
M. Mashayekhi ◽  
M. Salimi

Mechanical and thermal properties significantly affect many aspects of machining, such as chip formation, cutting forces, cutting temperatures, and surface integrity of machined products. One of the most important mechanical properties is the material flow stress, which is governed by the field variables including the strain, strain rate, and temperature. Due to the presence of high values of these variables in machining, it is important to evaluate the performance of different material models, typically developed at much lower strains, strain rates, and temperatures. The other issue is to identify the effect of the history of these variables that material microvolume experiences while moving through the shear zones and include them in the model. It is demonstrated that such material models may be suitable choices to describe the material flow in simulation of machining, which leads to an extrapolation from the mathematical form of these models. In addition, this paper discuses the importance of history dependency in flow stress and compares the performance of three commonly employed material constitutive models including the nonhistory-dependent Johnson–Cook (J–C) model, the empirical Oxley model, and the history-dependent Maekawa model. It is demonstrated that among the metals with different crystal structures, the flow stress of face-centered cubic (FCC) metals is highly affected by the strain path and is very little sensitive to temperature and strain-rate changes. In addition, the magnitudes of these effects are discussed.


2007 ◽  
Vol 340-341 ◽  
pp. 1079-1084 ◽  
Author(s):  
Tao Suo ◽  
Yu Long Li ◽  
Yuan Yong Liu

In this paper, the mechanical behavior of a PMMA used as the windshield of aircraft was tested. The experiments were finished under two quasi-static strain rates and a high strain rate with the testing temperature from 299K to 373K. The results show that the mechanical property of this PMMA depends heavily on the testing temperature. The Young’s modulus and flow stress were found to decrease with increasing temperature at low strain rate. At the strain rate of 10-1 1/s, strain softening was observed under all experiment temperatures. At high strain rate, with the temperature increasing, the flow stress decreases remarkably while the failure strain increases, and the strain soften was also observed at the temperature above 333K. Comparing the experiments results at same temperature, it was found the flow stress increases with the rising strain rate. The predictions of the mechanical behavior using the ZWT theoretical model have a good agreement with experimental results in the strain range of 8%.


2014 ◽  
Vol 1058 ◽  
pp. 165-169 ◽  
Author(s):  
Shi Ming Hao ◽  
Jing Pei Xie

The hot deformation behaviors of 30%SiCp/2024 aluminum alloy composites was studied by hot compression tests using Gleeble-1500 thermomechanical simulator at temperatures ranging from 350-500°C under strain rates of 0.01-10 s-1. The true stress-true strain curves were obtained in the tests. Constitutive equation and processing map were established. The results show that the flow stress decreases with the increase of deformation temperature at a constant strain rate, and increases with the increase of strain rate at constant temperature, indicating that composite is a positive strain rate sensitive material. The flow stress behavior of composite during hot compression deformation can be represented by a Zener-Hollomon parameter in the hyperbolic sine form. Its activation energy for hot deformation Q is 183.251 kJ/mol. The optimum hot working conditions for this material are suggested.


2013 ◽  
Vol 709 ◽  
pp. 143-147 ◽  
Author(s):  
Tao Wang ◽  
Zhao Li ◽  
Shu Hong Fu ◽  
Yong Zhang ◽  
Yu Xin Zhao ◽  
...  

The hot deformation behavior of U720Li was investigated by isothermal compression tests at temperature ranging from 1060-1180°C and strain rate from 0.001s-1 to 20s-1. The flow stress-strain curves and microstructures were investigated and a constitutive equation was established. It is found that flow stress is sensitive to stain rate and deformation temperature greatly. The higher stain rate resultes in a larger fluctuation in flow stress. The hot deformation activation energy is determined to be 552.8kJ/mol. Grain size increases with increasing temperature and decreases firstly and then increases with increasing strain rate. U720Li alloy should be deformed below the solve temperature of γ primary phase with lower strain rate in order to obtain the even and fine grain size.


2019 ◽  
Vol 51 (1) ◽  
pp. 467-481
Author(s):  
Suwaree Chankitmunkong ◽  
Dmitry G. Eskin ◽  
Chaowalit Limmaneevichitr

Abstract Aluminum piston alloys of the AA4032 type are produced by direct-chill (DC) casting and subsequent forging; therefore, it is important to understand their thermomechanical behavior. In recent years, it was shown that additions of Cu and Er could improve mechanical properties of these alloys at room and high temperatures. In this work, we studied the constitutive behavior of AA4032-type alloys with and without Cu and Er additions. The experimental true stress–true strain curves were obtained by compression tests under various temperatures [683 K to 723 K (410 °C to 450 °C)] and strain rates (0.01 to 10 s−1) to determine constitutive parameters [strain-rate sensitivity, activation energy, and Zener–Hollomon (Z) parameter] for the hot deformation behavior of AA4032-type piston alloys with and without additions of Cu and Er. The flow stress decreased with increasing deformation temperature and decreasing strain rate. The results also showed that increasing the Cu content increased the flow stress over the applied range of deformation conditions due to solid-solution strengthening and the formation of primary Si particles, which led to an increase in the activation energy during hot deformation. Moreover, the main microstructural damage in the AA4032 alloy with 3.5 pct Cu was predominantly due to the cracking of primary Si particles. Additions of 0.4 pct Er and 3.5 pct Cu lower the activation energy of deformation, Q, as compared to the base alloy and the alloy with 3.5 pct Cu. The microstructures in the deformed specimens consisted of subgrains, recrystallized grains, and fine eutectic phases. The alloys containing Er demonstrated more polygonized grains at a low strain rate than the alloys without Er, indicating that Er hindered recrystallization development. The peak stress of the AA4032 alloy with 3.5 pct Cu alloy was higher than for the base AA4032 alloy and for the AA4032 alloy with 3.5 pct Cu and 0.4 pct Er additions, which was attributed to the prevalence of the work-hardening mechanism over the softening mechanism.


Author(s):  
Ning Fang

Among the effects of strain hardening, strain-rate hardening, and temperature softening, it has long been argued about which effect is predominant in governing the material flow stress in machining. This paper compares four material constitutive models commonly employed, including Johnson-Cook’s model, Oxley’s model, Zerilli-Armstrong’s model, and Maekawa et al.’s model. A new quantitative sensitivity analysis of the material flow stress is performed based on Johnson-Cook’s model covering a wide range of engineering materials, including plain carbon steels with different carbon contents, alloyed steels, aluminum alloys with different chemical compositions and heat treatment conditions, copper and copper alloys, iron, nickel, tungsten alloys, etc. It is demonstrated that the first predominant factor governing the material flow stress is either strain hardening or thermal softening, depending on the specific work material employed and the varying range of temperatures. Strain-rate hardening is the least important factor governing the material flow stress, especially when machining aluminum alloys.


Sign in / Sign up

Export Citation Format

Share Document