Suppression of Fluid Forces Acting on a Square Prism by Passive Control

1997 ◽  
Vol 119 (3) ◽  
pp. 506-511 ◽  
Author(s):  
H. Sakamoto ◽  
K. Tan ◽  
N. Takeuchi ◽  
H. Haniu

Suppression of fluid forces acting on a square prism by passive control of the approaching flow was investigated in the present study. Flow was controlled using a small flat plate upstream of the prism. The position of the flat plate was varied within the range of S/W = 0 ~ 3.0 (S: distance between the flat plate and square prism, W: width of square prism) and the width h of the flat plate ranged from 2 mm to 8 mm (h/W = 0.05 ~ 0.19). Steady and unsteady fluid forces, vortex shedding frequency, and flow pattern were systematically investigated. The maximum reduction of time-averaged drag was 75 percent, and the maximum reduction in fluctuating lift and drag was 95 and 80 percent, respectively, using a flat plate 1/10 of the size of the square prism.

1994 ◽  
Vol 116 (2) ◽  
pp. 221-227 ◽  
Author(s):  
H. Sakamoto ◽  
H. Haniu

The objective of this paper is to investigate the suppression of the fluid forces acting on a circular cylinder (hereafter called the main cylinder) by controlling the flow around it. Flow control was established by introducing a fine circular cylinder (hereafter called the control cylinder) near the main cylinder. Measurements were carried out with variation of the position of the control cylinder in the ranges of G/d = 0.004 ~ 0.20 (G is the gap between main cylinder and control cylinder, d is diameter of main cylinder) and α = 0 ~ 180 deg (α is the angle along circumference from the front stagnation point of main cylinder) at a Reynolds number of 6.5 × 104. Subsequently, the steady and unsteady fluid forces, vortex shedding frequency and flow pattern were systematically examined. Furthermore, such matters as the mechanism of the flow control, the nature of the controlled wake, the relationship between the characteristics of the controlled fluid forces, and the behavior of the flow were discussed in detail on the basis of the obtained results regarding fluid forces, vortex shedding frequency and flow pattern.


1991 ◽  
Vol 113 (2) ◽  
pp. 183-189 ◽  
Author(s):  
H. Sakamoto ◽  
K. Tan ◽  
H. Haniu

This paper deals with the suppression of the fluid forces by controlling a shear layer on one side separated from a square prism. The control of the separated shear layer was established by setting up a small circular cylinder (the control cylinder) in it on one side. Experimental data were collected to examine the effects on the fluid forces and vortex shedding frequency due to variation of the position and diameter of the control cylinder. The results show that (i) the maximum reduction of the time-mean drag and fluctuating lift and drag occurred when the control cylinder was located near what would ordinarily be considered the outer boundary of the shear layer; (ii) the control of the separated shear layer by means of a small cylinder appeared to be effective in suppressing the fluctuating lift and drag rather than the time-mean drag; (iii) in the case of the control cylinder of 6 mm in diameter, the time-mean drag was reduced to about 30 percent, and the fluctuating lift and drag were reduced to approximately 95 and 75 percent, respectively; (iv) the fluid forces and the frequency of vortex shedding of the square prism were mainly dependent on the characteristics of a very thin region near the outer boundary of the shear layer.


2020 ◽  
Vol 8 (3) ◽  
pp. 195
Author(s):  
Jian Hu ◽  
Zibin Wang ◽  
Wang Zhao ◽  
Shili Sun ◽  
Cong Sun ◽  
...  

This paper presents a numerical modeling procedure for the idealization of vortex shedding effects in the wake flow field of a NACA0009 hydrofoil. During the simulation, the lift and drag acting on the hydrofoil were monitored, and the vortex-shedding frequency of the hydrofoil was analyzed. The effects of inflow velocity, trailing-edge thickness, angle of attack, and maximum hydrofoil thickness on vortex shedding were investigated. The results indicate that an increase in the inflow velocity led to an increase in the vortex-shedding frequency and a negligible change in the Strouhal number. Furthermore, as the thickness of the trailing edge increased, the vortex-shedding frequency decreased gradually, whereas the Strouhal number first increased and then decreased. Vortex shedding and lift curve oscillations ceased altogether after the angle of attack of the hydrofoil increased beyond a certain threshold. When the maximum hydrofoil thickness was increased while keeping the thickness and chord length of the trailing edge constant, the vortex-shedding frequency decreased.


1984 ◽  
Vol 106 (1) ◽  
pp. 70-78 ◽  
Author(s):  
A. J. Grass ◽  
P. W. J. Raven ◽  
R. J. Stuart ◽  
J. A. Bray

The paper summarizes the results of a laboratory study of the separate and combined effects of bed proximity and large velocity gradients on the frequency of vortex shedding from pipeline spans immersed in the thick boundary layers of tidal currents. This investigation forms part of a wider project concerned with the assessment of span stability. The measurements show that in the case of both sheared and uniform approach flows, with and without velocity gradients, respectively, the Strouhal number defining the vortex shedding frequency progressively increases as the gap between the pipe base and the bed is reduced below two pipe diameters. The maximum increase in vortex shedding Strouhal number, recorded close to the bed in an approach flow with large velocity gradients, was of the order of 25 percent.


2014 ◽  
Vol 493 ◽  
pp. 68-73 ◽  
Author(s):  
Willy Stevanus ◽  
Yi Jiun Peter Lin

The research studies the characteristics of the vertical flow past a finite-length horizontal cylinder at low Reynolds numbers (ReD) from 250 to 1080. The experiments were performed in a vertical closed-loop water tunnel. Flow fields were observed by the particle tracer approach for flow visualization and measured by the Particle Image Velocimetry (P.I.V.) approach for velocity fields. The characteristics of vortex formation in the wake of the finite-length cylinder change at different regions from the tip to the base of it. Near the tip, a pair of vortices in the wake was observed and the size of the vortex increased as the observed section was away from the tip. Around a distance of 3 diameters of the cylinder from its tip, the vortex street in the wake was observed. The characteristics of vortex formation also change with increasing Reynolds numbers. At X/D = -3, a pair of vortices was observed in the wake for ReD = 250, but as the ReD increases the vortex street was observed at the same section. The vortex shedding frequency is analyzed by Fast Fourier Transform (FFT). Experimental results show that the downwash flow affects the vortex shedding frequency even to 5 diameters of the cylinder from its tip. The interaction between the downwash flow and the Von Kármán vortex street in the wake of the cylinder is presented in this paper.


Author(s):  
Junxiang Shi ◽  
Steven R. Schafer ◽  
Chung-Lung (C. L. ) Chen

A passive, self-agitating method which takes advantage of vortex-induced vibration (VIV) is presented to disrupt the thermal boundary layer and thereby enhance the convective heat transfer performance of a channel. A flexible cylinder is placed at centerline of a channel. The vortex shedding due to the presence of the cylinder generates a periodic lift force and the consequent vibration of the cylinder. The fluid-structure-interaction (FSI) due to the vibration strengthens the disruption of the thermal boundary layer by reinforcing vortex interaction with the walls, and improves the mixing process. This novel concept is demonstrated by a three-dimensional modeling study in different channels. The fluid dynamics and thermal performance are discussed in terms of the vortex dynamics, disruption of the thermal boundary layer, local and average Nusselt numbers (Nu), and pressure loss. At different conditions (Reynolds numbers, channel geometries, material properties), the channel with the VIV is seen to significantly increase the convective heat transfer coefficient. When the Reynolds number is 168, the channel with the VIV improves the average Nu by 234.8% and 51.4% in comparison with a clean channel and a channel with a stationary cylinder, respectively. The cylinder with the natural frequency close to the vortex shedding frequency is proved to have the maximum heat transfer enhancement. When the natural frequency is different from the vortex shedding frequency, the lower natural frequency shows a higher heat transfer rate and lower pressure loss than the larger one.


Author(s):  
Mohammed Alziadeh ◽  
Atef Mohany

Abstract This article explores the applicability of utilizing different equivalent diameter (Deq) equations to estimate the vortex shedding frequency and onset of self-excited acoustic resonance for various types of finned cylinders. The focus is on three finned cylinder types that are commonly used in industrial heat exchangers: straight, twist-serrated, and crimped spirally finned cylinders. Within each type of fins, at least three different finned cylinders are investigated. The results indicate that at off-resonance conditions, utilizing the appropriate equivalent diameter collapses the Strouhal number data within the typical Strouhal number variations of an equivalent diameter circular, bare cylinder. However, when acoustic resonance is initiated, the onset and the peak of resonance excitation in all of the finned cylinder cases generally occurred at a reduced flow velocity earlier than that observed from their equivalent diameter bare cylinders. This suggests that although utilizing the appropriate equivalent diameter can reasonably estimate the vortex shedding frequency away from acoustic resonance excitation, it cannot be used to predict the onset of acoustic resonance in finned tubes. The findings of this study indicate that the effective diameter approach is not sufficient to capture the intrinsic changes in the flow-sound interaction mechanism as a result of adding fins to a bare cylinder. Thus, a revision of the acoustic Strouhal number charts is required for finned tubes of different types and arrangements.


2013 ◽  
Vol 735 ◽  
pp. 307-346 ◽  
Author(s):  
S. Kumar ◽  
C. Lopez ◽  
O. Probst ◽  
G. Francisco ◽  
D. Askari ◽  
...  

AbstractFlow past a circular cylinder executing sinusoidal rotary oscillations about its own axis is studied experimentally. The experiments are carried out at a Reynolds number of 185, oscillation amplitudes varying from $\mathrm{\pi} / 8$ to $\mathrm{\pi} $, and at non-dimensional forcing frequencies (ratio of the cylinder oscillation frequency to the vortex-shedding frequency from a stationary cylinder) varying from 0 to 5. The diagnostic is performed by extensive flow visualization using the hydrogen bubble technique, hot-wire anemometry and particle-image velocimetry. The wake structures are related to the velocity spectra at various forcing parameters and downstream distances. It is found that the phenomenon of lock-on occurs in a forcing frequency range which depends not only on the amplitude of oscillation but also the downstream location from the cylinder. The experimentally measured lock-on diagram in the forcing amplitude and frequency plane at various downstream locations ranging from 2 to 23 diameters is presented. The far-field wake decouples, after the lock-on at higher forcing frequencies and behaves more like a regular Bénard–von Kármán vortex street from a stationary cylinder with vortex-shedding frequency mostly lower than that from a stationary cylinder. The dependence of circulation values of the shed vortices on the forcing frequency reveals a decay character independent of forcing amplitude beyond forcing frequency of ${\sim }1. 0$ and a scaling behaviour with forcing amplitude at forcing frequencies ${\leq }1. 0$. The flow visualizations reveal that the far-field wake becomes two-dimensional (planar) near the forcing frequencies where the circulation of the shed vortices becomes maximum and strong three-dimensional flow is generated as mode shape changes in certain forcing parameter conditions. It is also found from flow visualizations that even at higher Reynolds number of 400, forcing the cylinder at forcing amplitudes of $\mathrm{\pi} / 4$ and $\mathrm{\pi} / 2$ can make the flow field two-dimensional at forcing frequencies greater than ${\sim }2. 5$.


Sign in / Sign up

Export Citation Format

Share Document