On the Mechanism of Multi-Valued Friction in Unsteady Sliding Line Contacts Operating in the Regime of Mixed-Film Lubrication

1997 ◽  
Vol 119 (1) ◽  
pp. 149-155 ◽  
Author(s):  
Xuejun Zhai ◽  
G. Needham ◽  
L. Chang

Systematic analyses are presented to reveal the mechanism of multi-valued friction behavior in lubricated sliding contacts with time-varying velocities. The analyses are based on the theoretical results generated by a mixed-film friction model developed in this paper for line contacts. The model, which integrates theories of transient elastohydrodynamics and asperity contact mechanics, is validated by comparing its results with published experimental data. The results and the subsequent analyses disclose that strong multi-valued friction behavior can only be generated in the mixed-film lubrication regime with simultaneous presence of significant asperity contacts and hydrodynamic squeeze. Principal factors which influence the magnitude of dynamic friction are investigated in the paper. Being instructive to the design of tribocontacts in precise-motion control systems, the analyses suggest means to minimize the undesirable multi-valued friction behavior through proper selection of system parameters.

1996 ◽  
Vol 118 (3) ◽  
pp. 693-697 ◽  
Author(s):  
Xianhua Zhang ◽  
Koji Kato

Based upon previous results for thin solid film lubrication, a contact model has been proposed which can describe the physical essence of the steady-state friction condition. By using this contact model, a theoretical calculation method has been established. Good agreement between theoretical results and experimental results obtained for tribo-coatings shows that this theory can be used for practical application to obtain and maintain good solid lubrication.


1999 ◽  
Vol 122 (1) ◽  
pp. 77-85 ◽  
Author(s):  
L. Chang ◽  
Yongwu Zhao

This paper studies the sensitivities of the asperity pressures and temperatures to the fluid pressure distribution in concentrated contacts operating in the regime of mixed-film lubrication. Two fluid pressure distributions are used in the study. One is a Hertz-like distribution that neglects micro-EHL responses of the lubricant, and the other models the micro-EHL effects with significant pressure rippling. The asperity pressures and temperatures are deterministically calculated in time by numerically solving the asperity-contact and the transient energy equations as the two surfaces move relative to each other. The contact is simulated for sufficient time duration until the samples of the calculated asperity variables reach a statistical equilibrium that reflects the random-process nature of the problem. Parametric analyses are carried out that cover a wide range of operating conditions of practical interest. The results obtained consistently suggest that the asperity pressures and temperatures are not sensitively related to the fluid pressure. This insensitivity supports the use of any fluid pressure distribution consistent with the underlying mixed-film problem, rather than determining it by numerically solving the Reynolds equation at every time step of the simulation process. The study lays a foundation on which to advance modeling of the mixed-film contacts with a proper balance among model robustness, computational efficiency and solution accuracy. [S0742-4787(00)01101-2]


2012 ◽  
Vol 217-219 ◽  
pp. 1774-1778
Author(s):  
Zai Xiang Zheng ◽  
Jing Xu ◽  
Guo Xian Liu

In the tube hydroforming process, the friction behavior between the tube blank and the die is very complex. As a result, it is very difficult to build a precise friction model in accordance with the actual working conditions by fully taking into account the various factors. In this paper, the friction behaviors between the tube blank and the die in the guided, transition and expansion zones have been studied with the help of numerical simulation and experimental tests. The influences of the different friction conditions in the three zones as well as the uneven friction behavior in the expansion zone on the thickness distribution of tube wall and the characteristics of material flow have been analyzed and experimental tests have been carried out for the verification. The conclusions have provided theoretical references for the process planning, selection of lubrication and tooling design in the actual production process of tube hydroforming.


Author(s):  
George G. Adams ◽  
Sinan Mu¨ftu¨ ◽  
Nazif Mohd Azhar

As surfaces become smoother and loading forces decrease in applications such as MEMS and NEMS devices, the asperity contacts which comprise the real contact area will continue to decrease into the nano scale regime. Thus it becomes important to understand how the material and topographical properties of surfaces contribute to measured friction forces at this nano scale. We have incorporated the single asperity nano contact model of Hurtado and Kim into a multi-asperity model for contact and friction which includes the effect of asperity adhesion forces using the Maugis-Dugdale model. Our model spans the range from nano-scale to micro-scale to macro-scale contacts. We have identified three key dimensionless parameters representing combinations of surface roughness measures, Burgers vector length, surface energy, and elastic modulus. Results are given for the normal and friction forces vs. separation, and for the friction coefficient vs. normal force for various values of these key parameters.


Friction ◽  
2021 ◽  
Author(s):  
Zongzheng Wang ◽  
Wei Pu ◽  
Xin Pei ◽  
Wei Cao

AbstractExisting studies primarily focus on stiffness and damping under full-film lubrication or dry contact conditions. However, most lubricated transmission components operate in the mixed lubrication region, indicating that both the asperity contact and film lubrication exist on the rubbing surfaces. Herein, a novel method is proposed to evaluate the time-varying contact stiffness and damping of spiral bevel gears under transient mixed lubrication conditions. This method is sufficiently robust for addressing any mixed lubrication state regardless of the severity of the asperity contact. Based on this method, the transient mixed contact stiffness and damping of spiral bevel gears are investigated systematically. The results show a significant difference between the transient mixed contact stiffness and damping and the results from Hertz (dry) contact. In addition, the roughness significantly changes the contact stiffness and damping, indicating the importance of film lubrication and asperity contact. The transient mixed contact stiffness and damping change significantly along the meshing path from an engaging-in to an engaging-out point, and both of them are affected by the applied torque and rotational speed. In addition, the middle contact path is recommended because of its comprehensive high stiffness and damping, which maintained the stability of spiral bevel gear transmission.


2021 ◽  
pp. 004051752110308
Author(s):  
Yang Liu ◽  
Zhong Xiang ◽  
Xiangqin Zhou ◽  
Zhenyu Wu ◽  
Xudong Hu

Friction between the tow and tool surface normally happens during the tow production, fabric weaving, and application process and has an important influence on the quality of the woven fabric. Based on this fact, this paper studied the influence of tension and relative velocity on the three kinds of untwisted-glass-fiber tow-on-roller friction with a Capstan-based test setup. Furthermore, an improved nonlinear friction model taking both tension and velocity into account was proposed. According to statistical test results, firstly, the friction coefficient was found to be positively correlated with tension and relative velocity. Secondly, tension and velocity were complementary on the tow-on-roller friction behavior, with neither being superior to the other. Thirdly, an improved model was found to present well the nonlinear characteristics between friction coefficient and tension and velocity, and predicational results of the model were found to agree well with the observations from Capstan tests.


1983 ◽  
Vol 105 (4) ◽  
pp. 598-604 ◽  
Author(s):  
A. Mostofi ◽  
R. Gohar

In this paper, a numerical solution to the elastohydrodynamic lubrication (EHL) problem is presented for a cylindrical roller with axially profiled ends, rolling over a flat plane. Convergence was obtained for moderate load and material parameters (glass, steel, and a mineral oil). Isobars, contours, and section graphs, show pressure variation and film shape. Predictions of film thickness compare favorably with experiments which use the optical interference method, as well as with other theoretical results for an infinite line contact, or an ellipse having a long slender aspect ratio. The maximum EHL pressure occurs near the start of the profiling and can exceed pressure concentrations there predicted by elastostatic theory.


2007 ◽  
Vol 130 (1) ◽  
Author(s):  
Neelesh Deolalikar ◽  
Farshid Sadeghi ◽  
Sean Marble

Highly loaded ball and rolling element bearings are often required to operate in the mixed elastohydrodynamic lubrication regime in which surface asperity contact occurs simultaneously during the lubrication process. Predicting performance (i.e., pressure, temperature) of components operating in this regime is important as the high asperity contact pressures can significantly reduce the fatigue life of the interacting components. In this study, a deterministic mixed lubrication model was developed to determine the pressure and temperature of mixed lubricated circular and elliptic contacts for measured and simulated surfaces operating under pure rolling and rolling/sliding condition. In this model, we simultaneously solve for lubricant and asperity contact pressures. The model allows investigation of the condition and transition from boundary to full-film lubrication. The variation of contact area and load ratios is examined for various velocities and slide-to-roll ratios. The mixed lubricated model is also used to predict the transient flash temperatures occurring in contacts due to asperity contact interactions and friction. In order to significantly reduce the computational efforts associated with surface deformation and temperature calculation, the fast Fourier transform algorithm is implemented.


2014 ◽  
Vol 997 ◽  
pp. 321-324
Author(s):  
Wei Zheng ◽  
Guang Chun Wang ◽  
Bing Tao Tang ◽  
Xiao Juan Lin ◽  
Yan Zhi Sun

After modifying the Wahime/Bay friction model, a new friction model suitable for micro-forming process without lubrication is established. In this model, it is shows that the friction coefficient is a function of strain hardening exponent, the normal pressure and the initial yield stress of material. Based on the experimental data, the micro-upsetting process is simulated using the proposed friction model. The simulation results are used to investigate the size effect on the dry friction behavior. It is found that the Coulomb’s friction coefficient is dropping with miniaturization of specimens when the amount of reduction is not too large.


Sign in / Sign up

Export Citation Format

Share Document