Analysis of EHL Circular Contact Start Up: Part I—Mixed Contact Model With Pressure and Film Thickness Results

2000 ◽  
Vol 123 (1) ◽  
pp. 67-74 ◽  
Author(s):  
Jiaxin Zhao ◽  
Farshid Sadeghi ◽  
Michael H. Hoeprich

In this paper a model is presented to investigate the start up condition in elastohydrodynamic lubrication. During start up the lubrication condition falls into the mixed lubrication regime. The transition from solid contact to lubricated contact is of importance when investigating the start up process and its effects on bearing performance. The model presented uses the multigrid multilevel method to solve the lubricated region of the contact and a minimization of complementary energy approach to solve the solid contact region. The FFT method is incorporated to speed up the film thickness calculation. An iteration scheme between the lubrication and the solid contact problems is used to achieve the solution of the mixed lubrication contact problem. The results of start up with smooth surfaces are provided for the case when speed increases from zero to desired speed in one step and the case when speed is linearly increased to desired speed. The details of the transition from full solid contact to full lubricated contact in EHL start up are presented. The change of pressure and film thickness as well as contact forces and contact areas are discussed.

Author(s):  
Jiaxin Zhao

In this paper, the start up condition in elastohydrodynamic lubrication was studied on a steel ball on glass disc contact lubricated with a mineral oil, using a previously developed mixed phase lubrication contact model. The numerical simulation demonstrated the contact geometry change in the transition from initial solid contact to final fully lubricated contact, as well as the load sharing variation between lubricated and solid contacts during the start up. The numerical results of contact geometry was then compared with an experimental study of the same start up situation published by Glovnea and Spikes [1]. The film thickness variations and the propagation of the solid-lubricated contact interface during the start up were compared. Furthermore, an analytical result of the propagation of the solid-lubricated contact interface was also generated by assuming the dominance of the wedge and squeeze terms in the Reynolds Equation, and was also compared with the numerical and experimental results. Good agreement exists among the analytical, numerical and experimental results. The good agreement proves the numerical model as a valid tool in studying the start up condition in elastohydrodynamic lubrication as the transition from solid contact to lubricated contact is of great importance when investigating the start up process and its effects on the overall lubrication performance.


2013 ◽  
Vol 420 ◽  
pp. 30-35
Author(s):  
Khanittha Wongseedakaew ◽  
Jesda Panichakorn

This paper presents the effects of rough surface air-soft elastohydrodynamic lubrication (EHL) of rollers for soft material under the effect of air molecular slip. The time independent modified Reynolds equation and elasticity equation were solved numerically using finite different method, Newton-Raphson method and multigrid multilevel methods were used to obtain the film pressure profiles and film thickness in the contact region. The effects of amplitude of surface roughness, modulus of elasticity and air inlet temperature are examined. The simulation results showed surface roughness has effect on film thickness but it little effect to air film pressure. When the amplitude of surface roughness and modulus of elasticity increased, the air film thickness decreased but air film pressure increased. However, the air inlet temperature increased when the air film thickness increased.


Author(s):  
Syed Adnan Qasim ◽  
M. Afzaal Malik

In the normal low-speed engine operation, elastohydrodynamic lubrication (EHL) of piston skirts and lubricant rheology reduce friction and prevent wear. In a few initial start up cycles, a very low engine speed and absence of EHL cause adhesive wear. This study models hydrodynamic and EHL of piston skirts in the initial very low cold engine start up speed by using a high viscosity lubricant. The 2-D Reynolds equation is solved and inverse solution technique is used to calculate the pressures and film thickness profiles in the hydrodynamic and EHL regimes, respectively. The work is extended to investigate the effects of three very low initial engine start up speeds on the transverse eccentricities of piston skirts, film thickness profiles and pressure fields in the hydrodynamic and EHL regimes. Despite using a viscous lubricant, thin EHL film profiles are generated at low start up speeds. This study suggests very low speed optimization in the cold initial engine start up conditions to prevent piston wear under isothermal conditions.


2012 ◽  
Vol 134 (4) ◽  
Author(s):  
Shanhua Qian ◽  
Dan Guo ◽  
Shuhai Liu ◽  
Xinchun Lu

Lubricant flow properties of polyalphaolefin (PAO) oil have been experimentally investigated based on a ball-on-disc configuration under micro oil supply condition. The oil pool shape and central film thickness in the contact region were obtained using fluorescence microscopy and optical interferometry, respectively. It has been found that the relative length between the inlet meniscus and Hertzian center point in the oil pool to Hertzian radius was much larger than 1 in a smaller lubricant supply of 20 μl, and the corresponding contact region initially entered the elastohydrodynamic lubrication (EHL) region and then became starved with the increasing speed. The variations of the relative film thickness as a function of starvation degree and the ratio of relative length to Hertzian radius were proposed to explain the obtained results. Besides, the fluorescence technique was used to directly observe the inlet meniscus position of the oil pool and helped to gain more understanding of the lubricant flow properties under micro oil supply condition.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Dong Zhu ◽  
Q. Jane Wang

Effect of roughness orientation on lubricant film thickness has been an important issue of surface design, attracting much attention since the 1970 s. A systematical study, however, is still needed for various contact types in an extended range of operating conditions, especially in mixed lubrication cases with film thickness to roughness ratio (λ ratio) smaller than 0.5. The present study employs a deterministic mixed elastohydrodynamic lubrication (EHL) model to investigate the performance of lubricating films in different types of contact geometry, including the line contact, circular contact, and elliptical contacts of various ellipticity ratios. The speed range for analyzed cases covers 11 orders of magnitude so that the entire transition from full-film and mixed EHL down to dry contact (corresponding λ ratio from about 3.5 down to 0.001 or so) is simulated. Three types of machined surfaces are used, representing transverse, longitudinal, and isotropic roughness, respectively. The line contact results are compared with those from the stochastic models by Patir and Cheng (“Effect of Surface Roughness Orientation on the Central Film Thickness in EHD Contacts,” Proc. 5th Leeds-Lyon Symp. on Tribol., 1978, pp. 15–21) and the influence of roughness orientation predicted by the deterministic model is found to be less significant than that by the stochastic models, although the basic trends are about the same when λ > 0.5. The orientation effect for circular or elliptical contact problems appears to be more complicated than that for line contacts due to the existence of significant lateral flows. In circular contacts, or elliptical contacts with the ellipticity ratio smaller than one, the longitudinal roughness may become more favorable than the isotropic and transverse. Overall, the orientation effect is significant in the mixed EHL regime where theλratio is roughly in the range from 0.05 to 1.0. It is relatively insignificant for both the full-film EHL (λ > 1.2 or so) and the boundary lubrication/dry contact (λ < 0.025 ∼ 0.05).


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Chunxing Gu ◽  
Xianghui Meng ◽  
Youbai Xie ◽  
Xiaoli Kong

In this paper, the start-up process of the ring/liner system with surface texturing is studied. By employing a thermal-mixed lubrication model considering the oil supply, the tribological behavior of the textured surface under the cold and hot start-up conditions is investigated. It is found that the friction coefficient curve under the cold start-up condition is different from the hot start-up result. The textured surface is easier to form the hydrodynamic lubrication than the smooth surface, which is helpful to separate the mixed lubricated contact surfaces. With the textured features on the ring face, the less friction heat is generated at the start-up phase. These effects could prove beneficial in applications with the frequent start and stop conditions. Besides, the inlet wedge of ring can also influence the start-up performance.


2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Qie-Da Chen ◽  
Wang-Long Li

Soft elastohydrodynamic lubrication (soft-EHL) is an important mechanism in biotribological systems. The soft-EHL has some distinct differences from the traditional hard-EHL, and a systematic analysis factoring in key features of the “softness” appears to be lacking. In this paper, a complete soft-EHL line-contact model is developed. In the model, the half-space approximation is replaced by the finite thickness analysis; the geometrical and material nonlinearity due to finite deformation is factored in; the surface velocities altered by the curvature effect are considered, and the load balance equation is formulated based on the deformed configuration. Solutions are obtained using a finite element method (FEM). The film thickness, pressure distributions, and material deformation are analyzed and discussed under various entraining velocities, elastic modulus, and material thickness of the soft layer. Comparisons are made between soft-EHL and hard-EHL modeling assumptions. The analyses show that the classical EHL modeling is not suitable for soft materials with high loads. The results show that the finite deformation (Green strain) should be considered in soft-EHL analysis. In the contact region, the hard EHL solver overestimates the pressure distribution and underestimates the film thickness and deformation.


2017 ◽  
Vol 739 ◽  
pp. 164-168
Author(s):  
Li Ming Chu ◽  
Jaw Ren Lin ◽  
Yuh Ping Chang

This paper presents a novel experiment method to investigate the microscopic mechanism of the oil film under the pure squeeze elastohydrodynamic lubrication (EHL) motion. An optical EHL squeeze tester is used to measure the interference fringe patterns of the contact region. In order to show the dimple thickness clearly, the grayscale interferometry method is employed to obtain the film thickness map. In addition, the effects of squeeze speed, load, and lubricant viscosity on the dimple film thickness are explored under a quasi-static condition.


2012 ◽  
Vol 67 (6-7) ◽  
pp. 412-418
Author(s):  
Li-Ming Chu ◽  
Jaw-Ren Lin ◽  
Jiann-Lin Chen

The effects of surface roughness and surface force on thin film elastohydrodynamic lubrication (TFEHL) circular contact problems are analyzed and discussed under constant load condition. The multi-level multi-integration (MLMI) algorithm and the Gauss-Seidel iterative method are used to simultaneously solve the average Reynolds type equation, surface force equations, the load balance equation, the rheology equations, and the elastic deformation equation. The simulation results reveal that the difference between the TFEHL model and the traditional EHL model increase with decreasing film thickness. The effects of surface forces become significant as the film thickness becomes thinner. The surface forces have obvious effects in the Hertzian contact region. The oscillation phenomena in pressure and film thickness come mainly from the action of solvation forces


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
David Nečas ◽  
Tomáš Jaroš ◽  
Kryštof Dočkal ◽  
Petr Šperka ◽  
Martin Vrbka ◽  
...  

The present paper deals with an investigation of film formation in compliant lubricated contact. Despite these contacts can be found in many applications of daily life including both biological and technical fields, so far little is known about the lubrication mechanisms inside the contacts. The main attention is paid to the effect of kinematic conditions on central film thickness. For this purpose, fluorescent microscopy method was employed. Experiments were realized in ball-on-disk configuration, while the ball was made from rubber and the disk was from optical glass. The contact was lubricated by glycerol and polyglycol to examine the effect of fluid viscosity. The measurements were conducted under pure rolling and rolling/sliding conditions. The entrainment speed varied from 10 to 400 mm/s and constant load of 0.2 N was applied. Experimental results were compared with two theoretical predictions derived for isoviscous-elastohydrodynamic lubrication (I-EHL) regime. It was found that the thickness of lubricating film gradually increases with increasing entrainment speed, which corresponds to theoretical assumptions. Against expectations, evident influence of slide-to-roll ratio (SRR) on film formation was observed. In the last part of the paper, some limitations of this study are discussed and several recommendations for further methodology improvement are suggested.


Sign in / Sign up

Export Citation Format

Share Document