Measurement of Tip-Clearance Flow in a Multistage, Axial Flow Compressor

1996 ◽  
Vol 118 (2) ◽  
pp. 211-217 ◽  
Author(s):  
A. C. Foley ◽  
P. C. Ivey

Detailed measurements using pneumatic probe traverses, blade static pressure tappings, and laser anemometry are made in the third stage of a large-scale, low-speed, four-stage, axial flow, research compressor. Inlet conditions show well-ordered “two-dimensional” flow from approximately 40 to 85 percent annulus span. Outside of this region, reduced total pressure due to upstream leakage losses and endwall effects results in high incidence to the following blade row. As a result, peak suction surface static pressure moves forward along the blade chord for both the hub and tip of stators and rotors. At the blade tip, however, the peak suction pressure is maintained with chord due to radial flow on the suction surface being entrained into the tip leakage jet. The extent of rotor chord for which this “entrainment” occurs increases with increasing rotor tip clearance gap. The leakage jet from both stators and rotors is seen to “roll up” into a vortex downstream of their respective blade rows.

1994 ◽  
Author(s):  
Andrew C. Foley ◽  
Paul C. Ivey

Detailed measurements using pneumatic probe traverses, blade static pressure tappings and laser anemometry are made in the third stage of a large scale, low speed, four stage, axial flow, research compressor. Inlet conditions show well ordered ‘two dimensional’ flow from approximately 40 to 85% annulus span. Outside of this region, reduced total pressure due to upstream leakage losses aod endwall effects results in high incidence to the following blade row. As a result, peak suction surface static pressure moves forward along the blade chord for both the huh and tip of stators and rotors. At the blade tip however, the peak suction pressure is maintained with chord due to radial flow on the suction surface being entrained into the tip leakage jet. The extent of rotor chord for which this ‘entrainment’ occurs increases with increasing rotor tip clearance gap. The leakage jet from both stators and rotors is seen to ‘roll up’ into a vortex downstream of their respective blade rows.


1993 ◽  
Vol 115 (1) ◽  
pp. 128-136 ◽  
Author(s):  
J. Zeschky ◽  
H. E. Gallus

Detailed measurements have been performed in a subsonic, axial-flow turbine stage to investigate the structure of the secondary flow field and the loss generation. The data include the static pressure distribution on the rotor blade passage surfaces and radial-circumferential measurements of the rotor exit flow field using three-dimensional hot-wire and pneumatic probes. The flow field at the rotor outlet is derived from unsteady hot-wire measurements with high temporal and spatial resolution. The paper presents the formation of the tip clearance vortex and the passage vortices, which are strongly influenced by the spanwise nonuniform stator outlet flow. Taking the experimental values for the unsteady flow velocities and turbulence properties, the effect of the periodic stator wakes on the rotor flow is discussed.


Author(s):  
Horst Saathoff ◽  
Udo Stark

The paper describes an investigation of the overtip end-wall flow in a single–stage axial–flow low–speed compressor utilizing an oil flow technique and a periodic multisampling pressure measurement technique. Representative oil flow pictures and ensemble averaged casingwall pressure distributions with standard deviations — supplemented by selected endwall oil flow pictures from a corresponding 2D compressor cascade — are shown and carefully analysed. The results enable the key features of the overtip endwall flow to be identified and changes with flow rate — or inlet angle — to be determined.


Author(s):  
A. Doukelis ◽  
K. Mathioudakis ◽  
K. Papailiou

The performance of a high speed annular compressor cascade for different clearance gap sizes, with stationary or rotating hub wall is investigated. Five hole probe measurements, conducted at the inlet and outlet of the cascade, are used to derive blade performance characteristics, in the form of loss and turning distributions. Characteristics are presented in the form of circumferentially mass averaged profiles, while distributions on the exit plane provide information useful to interpret the performance of the blading. Static pressure distributions on the surface of the blades as well as inside the tip clearance gap have also been measured. A set of four clearance gap sizes, in addition to zero clearance data for the stationary wall, gives the possibility to observe the dependence of performance characteristics on clearance size, and establish the influence of rotating the hub. Overall performance is related to features of the tip clearance flow. Increasing the clearance size is found to increase losses in the clearance region, while it affects the flow in the entire passage. Wall rotation is found to improve the performance of the cascade.


1993 ◽  
Author(s):  
I. K. Nikolos ◽  
D. I. Douvikas ◽  
K. D. Papailiou

An algorithm was set up for the implementation of the tip clearance models, described in Part I, in a secondary flow calculation method. A complete theoretical procedure was, thus, developed, which calculates the circumferentially averaged flow quantities and their radial variation due to the tip clearance effects. The calculation takes place in successive planes, where a Poisson equation is solved in order to provide the kinematic field. The self induced velocity is used for the positioning of the leakage vortex and a diffusion model is adopted for the vorticity distribution. The calculated pressure deficit due to the vortex presence is used, through an iterative procedure, in order to modify the pressure difference in the tip region. The method of implementation and the corresponding algorithm are described in this part of the paper and calculation results are compared to experimental ones for cascades and single rotors. The agreement between theory and experiment is good.


Author(s):  
Lu Yang ◽  
Hai Zhang ◽  
Aqiang Lin

The tip region of compressor rotors may be filled with water when aircraft is flying in heavy rain environment. In order to explore the effects of water ingestion on the compressor performance and the characteristics of tip clearance flow, the Euler–Lagrange method has been utilized to simulate the two-phase flow inside a transonic rotor (NASA rotor 35). The typical trajectory of water droplet in compressor has been introduced firstly to simply understand the situation of water ingestion and to verify the reliability of some special droplet breakup models. The simulation results show that water droplets will change the distribution of airflow parameters along the span direction, which leads to the decrease of mass flow rate and the increase of attack angle at the tip region, as well as the separation of boundary layer on the suction surface. Furthermore, the momentum losses caused by droplet impingement and breakup directly causes a sharp increase in the static entropy at the blade tip region. On the other hand, the ingestion of droplet brings an external disturbance to airflow, and although it has some dissipated effects on the turbulence kinetic energy, it aggravates the unsteady characteristics of turbulent flow seriously at the tip region. Finally, by comparing the compressor performance under wet and dry states, it can be concluded that the pressure ratio and adiabatic efficiency of compressor decrease after water ingestion, and the compression efficiency drops by 1–2% on the whole while the operating point moves forward and the stable working boundary becomes narrow.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Xingen Lu ◽  
Wuli Chu ◽  
Junqiang Zhu ◽  
Yangfeng Zhang

In order to advance the understanding of the fundamental mechanisms of axial skewed slot casing treatment and their effects on the subsonic axial-flow compressor flow field, the coupled unsteady flow through a subsonic compressor rotor and the axial skewed slot was simulated with a state-of-the-art multiblock flow solver. The computational results were first compared with available measured data, that showed the numerical procedure calculates the overall effect of the axial skewed slot correctly. Then, the numerically obtained flow fields were interrogated to identify the physical mechanism responsible for improvement in stall margin of a modern subsonic axial-flow compressor rotor due to the discrete skewed slots. It was found that the axial skewed slot casing treatment can increase the stall margin of subsonic compressor by repositioning of the tip clearance flow trajectory further toward the trailing of the blade passage and retarding the movement of the incoming∕tip clearance flow interface toward the rotor leading edge plane.


1970 ◽  
Vol 92 (3) ◽  
pp. 467-480 ◽  
Author(s):  
B. Lakshminarayana

Using the author’s earlier flow model for the tip clearance flow, an expression is derived for the decrease in stage efficiency due to tip clearance. The analysis which includes all the dominant flow and blade parameters that affect the flow in the clearance region is compatible with fundamental physical principles, though not precise mathematically. The predictions agree closely with several compressor, fan, pump, and turbine data available. An alternate model which takes into account the presence of the vortex core is proposed. The theoretical treatment of the flow, more complete than hitherto available, predicts blade-to-blade variation in outlet angles accurately and stagnation pressure losses qualitatively. The predictions are compared with various experimental data available in the literature.


Author(s):  
Masahiro Inoue ◽  
Masato Furukawa

In a recent advanced aerodynamic design of turbomachinery, the physical interpretation of three-dimensional flow field obtained by a numerical simulation is important for iterative modifications of the blade or impeller geometry. This paper describes an approach to the physical interpretation of the tip clearance flow in turbomachinery. First, typical flow phenomena of the tip clearance flow are outlined for axial and radial compressors, pumps and turbines to help comprehensive understanding of the tip clearance flow. Then, a vortex-core identification method which enables to extract the vortical structure from the complicated flow field is introduced, since elucidation of the vortical structure is essential to the physical interpretation of the tip clearance flow. By use of the vortex-core identification, some interesting phenomena of the tip clearance flows are interpreted, especially focussing on axial flow compressors.


2012 ◽  
Vol 225 ◽  
pp. 233-238
Author(s):  
A.M. Pradeep ◽  
R.N. Chiranthan ◽  
Debarshi Dutta ◽  
Bhaskar Roy

In this paper, detailed analysis of the tip flow of an axial compressor rotor blade has been carried out using the commercial CFD package ANSYS CFX. The rotor blade was designed such that it is reminiscent of the rear stages of a multi-stage axial compressor. The effects of varying tip gaps are studied using CFD simulations for overall pressure rise and flow physics of the tip flow at the design point and near the peak pressure point. Rig tests of a low speed research compressor rotor with 3% tip clearance provided characteristics plots for validation of the CFD results. With increase in clearance from 1% to 4%, the rotor pressure rise at the design point was observed to decrease linearly. Increase in the clearance increases the cross flow across the tip; however, the magnitude of the average jet velocity crossing the tip decreases. The tip leakage vortex was observed to stay close to the suction surface with increase in clearance.


Sign in / Sign up

Export Citation Format

Share Document