Flow Through a Lens-Shaped Duct

2008 ◽  
Vol 75 (3) ◽  
Author(s):  
C. Y. Wang

The flow through a symmetric, lens-shaped duct is solved by accurate Ritz and perturbation methods. The flow rate (resistance) is found for various thickness ratios. The flow rate is much better than friction factor–Reynolds number product as an index for duct flows, especially for the lens duct studied in this paper. The results are also important for the torsion of lens-shaped bars.

2019 ◽  
Vol 12 (1) ◽  
pp. 29-41
Author(s):  
Wenguang Li

Obstructive jaundice in the biliary tract can infect blood and result in mortality with a high rate. Percutaneous transhepatic biliary drainage (PTBD) with catheters is a useful solution discharging the obstructive jaundice. However, the elements of fluid mechanics showing clinical performance of a PTBD catheter have been documented little so far. In the article, empirical relationships between bile flow rate and pressure gradient in PTBD catheters were studied in terms of equivalent friction factor for the first time. Firstly, an equivalent friction factor in a catheter was raised and determined based on existing in vitro experimental data of bile flow through the catheters with different materials, various inner diameters and lengths under various pressure differences. Then, an empirical correlation of bile flow rate through a catheter was established based on pressure gradient, inner diameter and bile viscosity. The correlation was used to identify effects of catheter inner diameter and bile viscosity on the bile flow rate under the physiological bile pressure difference across obstructed common bile ducts. The feature of minor hydraulic losses in the catheters was clarified, too. The proposed equivalent friction factor was proportional to Reynolds number in a power of -0.654 in comparison with a power of -1 for the fully developed laminar flow in circular pipes. The bile flow rate through a catheter was proportional to inner diameter, kinematic viscosity, and pressure gradient in the powers of 3.2, -0.5 and 0.74, respectively. The minor hydraulic losses could be significant when Reynolds number was greater than 100.


2000 ◽  
Author(s):  
Stephen E. Turner ◽  
Hongwei Sun ◽  
Mohammad Faghri ◽  
Otto J. Gregory

Abstract This paper presents an experimental investigation on nitrogen and helium flow through microchannels etched in silicon with hydraulic diameters between 10 and 40 microns, and Reynolds numbers ranging from 0.3 to 600. The objectives of this research are (1) to fabricate microchannels with uniform surface roughness and local pressure measurement; (2) to determine the friction factor within the locally fully developed region of the microchannel; and (3) to evaluate the effect of surface roughness on momentum transfer by comparison with smooth microchannels. The friction factor results are presented as the product of friction factor and Reynolds number plotted against Reynolds number. The following conclusions have been reached in the present investigation: (1) microchannels with uniform corrugated surfaces can be fabricated using standard photolithographic processes; and (2) surface features with low aspect ratios of height to width have little effect on the friction factor for laminar flow in microchannels.


2000 ◽  
Vol 123 (1) ◽  
pp. 133-139 ◽  
Author(s):  
Jenn-Jiang Hwang ◽  
Chau-Ching Lu

The effects of lateral-flow ejection 0<ε<1.0, pin shapes (square, diamond, and circular), and flow Reynolds number (6000<Re<40,000) on the endwall heat transfer and pressure drop for turbulent flow through a pin-fin trapezoidal duct are studied experimentally. A staggered pin array of five rows and five columns is inserted in the trapezoidal duct, with the same spacings between the pins in the streamwise and spanwise directions: Sx/d=Sy/d=2.5. Three different-shaped pins of length from 2.5<l/d<4.6 span the distance between two endwalls of the trapezoidal duct. Results reveal that the pin-fin trapezoidal duct with lateral-flow rate of ε=0.3-0.4 has a local minimum endwall-averaged Nusselt number and Euler number for all pin shapes investigated. The trapezoidal duct of lateral outlet flow only (ε=1.0) has the highest endwall heat transfer and pressure drop. Moreover, the square pin results in a better heat transfer enhancement than the diamond pin, and subsequently than the circular pin. Finally, taking account of the lateral-flow rate and the flow Reynolds number, the work develops correlations of the endwall-averaged heat transfer with three different pin shapes.


2009 ◽  
Vol 131 (9) ◽  
Author(s):  
M. Firouzi ◽  
S. H. Hashemabadi

In this paper, the motion equation for steady state, laminar, fully developed flow of Newtonian fluid through the concave and convex ducts has been solved both numerically and analytically. These cross sections can be formed due to the sedimentation of heavy components such as sand, wax, debris, and corrosion products in pipe flows. The influence of duct cross section on dimensionless velocity profile, dimensionless pressure drop, and friction factor has been reported. Finally based on the analytical solutions three new correlations have been proposed for the product of Reynolds number and Fanning friction factor (Cf Re) for these geometries.


Author(s):  
Jenn-Jiang Hwang ◽  
Chau-Ching Lu

Effects of the lateral-flow ejection (0 ≦ ε ≦ 1.0), pin shapes (square, diamond and circular) and flow Reynolds number (6,000 ≦ Re ≦ 40,000) on the endwall heat transfer and pressure drop for turbulent flow through a pin-fin trapezoidal duct are studied experimentally. The trapezoidal duct are inserted with a staggered pin array of five rows and five columns, with the same spacings between the pins in streamwise and spanwise directions of Sx/d = Sy/d = 2.5. Three different-shaped pins of length from 2.5 < l/d < 4.6 span the distance between two endwalls of the trapezoidal duct. Results reveal that the pin-fin trapezoidal duct with a lateral-flow rate of ε = 0.3–0.4 has a local minimum endwall-averaged Nusselt number and Euler number for all pin shapes investigated. The trapezoidal duct of lateral outlet flow only (ε = 1.0) has the highest endwall heat transfer and pressure drop. Moreover, the square pin performs a better heat transfer enhancement than the diamond pin, and subsequently than the circular pin. Finally, taking account of the lateral-flow rate and the flow Reynolds number develops correlations of the endwall-averaged heat transfer for three different pin shapes.


Author(s):  
Yasuo Koizumi ◽  
Hiroyasu Ohtake ◽  
Hiroki Takahashi ◽  
Yoshiaki Ohno

The friction characteristics of water in a sub-millimeter scale channel were investigated experimentally. The friction factors and the critical Reynolds number were measured using water flow through circular tubes with diameters of 0.5, 0.25 and 0.17 mm. The experimental results show that the measured friction factor for water agreed well with the conventional Poiseuille (λ = 64/Re) and Blasius (λ = 0.316 Re−0.25) equations in laminar and turbulent flow regime; the laminar-turbulent transition Reynolds number was approximately 2300 for diameter 0.5 mm. For diameter 0.25 mm, the friction factor evaluated by the form pressure drop also agreed well with the Poiseuille equation. For diameter 0.17 mm, the measured total friction factor was close to the Poiseuille prediction.


1999 ◽  
Author(s):  
Stephen E. Turner ◽  
Hongwei Sun ◽  
Mohammad Faghri ◽  
Otto J. Gregory

Abstract This paper presents an experimental investigation on nitrogen and helium flow in microchannels etched in silicon with hydraulic diameters of 9.7, 19.6, and 46.6 μm, and Reynolds numbers ranging from 0. 2 to 1000. The objectives of this research are (1) to measure the pressure distribution along the length of a microchannel; and (2) to determine the friction factor within the fully developed region of the microchannel. The pressure distribution is presented as absolute local pressure plotted against the distance from the microchannel inlet. The friction factor results are presented as the product of friction factor and Reynolds number plotted against Reynolds number with the outlet Knudsen number, Kn, as a curve parameter. The following conclusions have been reached in the present investigation: (1) Pressure losses at the microchannel entrance can be significant; (2) the product, f*Re, when measured sufficiently far away from the entrance and exit is a constant in the laminar flow region; and (3) the friction factor decreases as the Knudsen number increases.


1994 ◽  
Vol 116 (3) ◽  
pp. 488-493 ◽  
Author(s):  
B. Youn ◽  
C. Yuen ◽  
A. F. Mills

Numerical simulations of incompressible turbulent flow through rectangular ducts with one side rib-roughened were performed to determine pressure drop. The “PHOENICS” software package was used for the computations, which required provision of a wall function for transverse rib-roughened surfaces. The present study was conducted in the range of 105≤ Reynolds number ≤ 107, 0.01 ≤ rib height to hydraulic diameter ratio ≤ 0.04, 10≤ pitch to rib height ratio ≤ 40. Using the numerical results, friction factor charts for various aspect ratios were generated. The numerical results agreed well with experimental data that was obtained for 105 < Reynolds number < 2 × 105. In addition, a scheme for predicting friction factor using existing correlations for smooth and rough walls was developed.


1977 ◽  
Vol 99 (3) ◽  
pp. 367-373 ◽  
Author(s):  
J. C. Koh ◽  
J. L. Dutton ◽  
B. A. Benson ◽  
A. Fortini

Measurements were performed to determine the pressure drops for gaseous flow through porous materials of different microstructures, porosities, and thickness under isothermal and nonisothermal conditions at various temperature levels. Results were satisfactorily correlated by a simple equation relating the friction factor to the Reynolds number and porosities.


2012 ◽  
Vol 134 (5) ◽  
Author(s):  
Sujoy Kumar Saha ◽  
Bikram Narayan Swain ◽  
G. L. Dayanidhi

The experimental friction factor and Nusselt number data for a laminar flow through a circular duct having axial corrugation and fitted with helical screw-tape inserts have been presented. Predictive friction factor and Nusselt number correlations have also been presented. The thermohydraulic performance has been evaluated. The major findings of this experimental investigation are that the helical screw-tape inserts, in combination with axial corrugation, perform better than the individual enhancement technique acting alone for laminar flow through a circular duct.


Sign in / Sign up

Export Citation Format

Share Document