The Computation of Adjacent Blade-Row Effects in a 1.5-Stage Axial Flow Turbine

1999 ◽  
Vol 121 (1) ◽  
pp. 1-10 ◽  
Author(s):  
R. Emunds ◽  
I. K. Jennions ◽  
D. Bohn ◽  
J. Gier

This paper deals with the numerical simulation of flow through a 1.5-stage axial flow turbine. The three-row configuration has been experimentally investigated at the University of Aachen where measurements behind the first vane, the first stage, and the full configuration were taken. These measurements allow single blade row computations, to the measured boundary conditions taken from complete engine experiments, or full multistage simulations. The results are openly available inside the framework of ERCOFTAC 1996. There are two separate but interrelated parts to the paper. First, two significantly different Navier–Stokes codes are used to predict the flow around the first vane and the first rotor, both running in isolation. This is used to engender confidence in the code that is subsequently used to model the multiple blade-row tests; the other code is currently only suitable for a single blade row. Second, the 1.5-stage results are compared to the experimental data and promote discussion of surrounding blade row effects on multistage solutions.

Author(s):  
Rolf Emunds ◽  
Ian K. Jennions ◽  
Dieter Bohn ◽  
Jochen Gier

This paper deals with the numerical simulation of flow through a 1.5 stage axial flow turbine. The 3-row configuration has been experimentally investigated at the University of Aachen where measurements behind the first vane, the first stage and the full configuration were taken. These measurements allow single blade row computations, to the measured boundary conditions taken from complete engine experiments, or full multistage simulations. The results are openly available inside the framework of ERCOFTAC 1996. There are two separate but interrelated parts to the paper. Firstly, two significantly different Navier-Stokes codes are used to predict the flow around the first vane and the first rotor, both running in isolation. This is used to engender confidence in the code that is subsequently used to model the multiple bladerow tests, the other code is currently only suitable for a single blade row. Secondly, the 1.5 stage results are compared to the experimental data and promote discussion of surrounding blade row effects on multistage solutions.


Author(s):  
J. H. Leylek ◽  
D. C. Wisler

Extensive numerical analyses and experiments have been conducted to understand mixing phenomena in multistage, axial-flow compressors. For the first time in the literature the following are documented: detailed 3-D Navier-Stokes solutions, with high-order turbulence modeling, are presented for flow through a compressor vane row at both design and off-design (increased) loading; comparison of these computations with detailed experimental data show excellent agreement at both loading levels; the results are then used to explain important aspects of mixing in compressors. The 3-D analyses show the development of spanwise and cross-passage flows in the stator and the change in location and extent of separated flow regions as loading increases. The numerical solutions support previous interpretations of experimental data obtained on the same blading using the ethylene tracer-gas technique and hot-wire anemometry. These results, plus new tracer-gas data, show that both secondary flow and turbulent diffusion are mechanisms responsible for both spanwise and cross-passage mixing in axial-flow compressors. The relative importance of the two mechanisms depends upon the configuration and loading levels. It appears that using the correct spanwise distributions of time-averaged inlet boundary conditions for 3-D Navier-Stokes computations enables one to explain much of the flow physics for this stator.


1991 ◽  
Vol 113 (2) ◽  
pp. 139-156 ◽  
Author(s):  
J. H. Leylek ◽  
D. C. Wisler

Extensive numerical analyses and experiments have been conducted to understand mixing phenomena in multistage, axial-flow compressors. For the first time in the literature the following are documented: Detailed three-dimensional Navier–Stokes solutions, with high order turbulence modeling, are presented for flow through a compressor vane row at both design and off-design (increased) loading; comparison of these computations with detailed experimental data show excellent agreement at both loading levels; the results are then used to explain important aspects of mixing in compressors. The three-dimensional analyses show the development of spanwise (radial) and circumferential flows in the stator and the change in location and extent of separated flow regions as loading increases. The numerical solutions support previous interpretations of experimental data obtained on the same blading using the ethylene tracer-gas technique and hot-wire anemometry. These results, plus new tracer-gas data, show that both secondary flow and turbulent diffusion are mechanisms responsible for both spanwise and circumferential mixing in axial-flow compressors. The relative importance of the two mechanisms depends upon the configuration and loading levels. It appears that using the correct spanwise distributions of time-averaged inlet boundary conditions for three-dimensional Navier–Stokes computations enables one to explain much of the flow physics for this stator.


Author(s):  
Merouane Habib ◽  
Senouci Mohammed

In this paper, we investigate the no-reacting swirling flow by using the numerical simulation based to the unsteady Reynolds-averaged Navier-Stokes approach. The numerical simulation was realized by using a computational fluid dynamics CFD code. The governing equations are solved by using the finite volume method with two classical models of turbulence K-epsilon and Shear Stress K-ω. The objective of this paper is therefore to evaluate the performance of the two models in predicting the recirculation zones in a swirled turbulent flow. The current models are validated by comparing the numerical results of the axial, radial and tangential velocities to the experimental data from literature.


1995 ◽  
Vol 1 (3-4) ◽  
pp. 225-235 ◽  
Author(s):  
M. J. Braun ◽  
M. Dzodzo

The flow in a hydrostatic pocket is numerically simulated using a dimensionless formulation of the 2-D Navier-Stokes equations written in primitive variables, for a body fitted coordinates system, and applied through a collocated grid. In essence, we continue the work of Braun et al. 1993a, 1993b] and extend it to the study of the effects of the pocket geometric format on the flow pattern and pressure distribution. The model includes the coupling between the pocket flow and a finite length feedline flow, on one hand, and the pocket and its adjacent lands on the other hand. In this context we shall present, on a comparative basis, the flow and the pressure patterns at the runner surface for square, ramped-Rayleigh step, and arc of circle pockets. Geometrically all pockets have the same footprint, same lands length, and same capillary feedline. The numerical simulation uses the Reynolds number based on the lid(runner) velocity and the inlet jet strengthFas the dynamic similarity parameters. The study aims at establishing criteria for the optimization of the pocket geometry in the larger context of the performance of a hydrostatic bearing.


Author(s):  
Limin Gao ◽  
Guang Xi ◽  
Shangjin Wang

Applying the novel time- and passage-averaging operators, a reduced average-passage equation system is derived to remove the bodyforce and the blockage factor in Adamczyk’s average-passage equations. Like the Reynolds-averaged Navier-Stokes equations the average-passage flow model does not contain sufficient information to determine its solution. Based on the rich throughflow analysis for axial-flow turbomachinery and numerous studies for centrifugal compressors, a semi-empirical model of the deterministic stress is developed for centrifugal compressors in the present study. Finally, the empirical model coupled with the interface approach is applied to predict the time-averaged flow field in a tested centrifugal compressor stage and the results are compared with experimental data. Using the same computational grids, the computational cost with the empirical model is slightly more than that with the mixing plane model, and a good agreement was obtained between the numerical results and experimental data.


2019 ◽  
Vol 213 ◽  
pp. 02011
Author(s):  
Jan Česenek

The article is concerned with the numerical simulation of the compressible turbulent gas flow through the porous media using space-time discontinuous Galerkin method.The mathematical model of flow is represented by the system of non-stationary Reynolds-Averaged Navier-Stokes (RANS) equations. The flow through the porous media is characterized by the loss of momentum. This RANS system is equipped with two-equation k-omega turbulence model. The discretization of these two systems is carried out separately by the space-time discontinuous Galerkin method. This method is based on the piecewise polynomial discontinuous approximation of the sought solution in space and in time. We present some numerical experiments to demonstrate the applicability of the method using own-developed code.


Author(s):  
Bin Hu ◽  
Yong Huang ◽  
Jianzhong Xu

According to the Lefebvre's model and flame volume (FV) concept, an FV model about lean blow-out (LBO) was proposed by authors in early study. On the other hand, due to the model parameter (FV) contained in FV model is obtained based on the experimental data, FV model could only be used in LBO analysis instead of prediction. In view of this, a hybrid FV model is proposed that combines the FV model with numerical simulation in the present study. The model parameters contained in the FV model are all estimated from the simulated nonreacting flows. Comparing with the experimental data for 11 combustors, the maximum and average uncertainties of hybrid FV model are ±16% and ±10%.


Author(s):  
Daniel Hoyniak ◽  
William S. Clark

A recently developed two dimensional, linearized Navier-Stokes algorithm, capable of modeling the unsteady flows encountered in turbomachinery applications, has been benchmarked and validated for use in the prediction of the aerodynamic damping. Benchmarking was accomplished by comparing numerical simulations with experimental data for two geometries. The first geometry investigated is a high turning turbine cascade. For this configuration, two different steady operating conditions were considered. The exit flow for one operating condition is subsonic whereas the exit flow for the other operating condition is supersonic. The second geometry investigated is a tip section from a high speed fan. Again, two separate steady operating conditions were examined. For this fan geometry, one operating condition falls within an experimentally observed flutter region whereas the other operating condition was observed experimentally to be flutter free. For both geometries considered, experimental measurements of the unsteady blade surface pressures were acquired for a linear cascade subjected to small amplitude torsional vibrations. Comparisons between the numerical calculations and the experimental data demonstrate the ability of the present computational model to predict accurately the steady and unsteady blade loading, and hence the aerodynamic damping, for each configuration presented.


Sign in / Sign up

Export Citation Format

Share Document