Aerodynamic Damping Predictions Using a Linearized Navier-Stokes Analysis

Author(s):  
Daniel Hoyniak ◽  
William S. Clark

A recently developed two dimensional, linearized Navier-Stokes algorithm, capable of modeling the unsteady flows encountered in turbomachinery applications, has been benchmarked and validated for use in the prediction of the aerodynamic damping. Benchmarking was accomplished by comparing numerical simulations with experimental data for two geometries. The first geometry investigated is a high turning turbine cascade. For this configuration, two different steady operating conditions were considered. The exit flow for one operating condition is subsonic whereas the exit flow for the other operating condition is supersonic. The second geometry investigated is a tip section from a high speed fan. Again, two separate steady operating conditions were examined. For this fan geometry, one operating condition falls within an experimentally observed flutter region whereas the other operating condition was observed experimentally to be flutter free. For both geometries considered, experimental measurements of the unsteady blade surface pressures were acquired for a linear cascade subjected to small amplitude torsional vibrations. Comparisons between the numerical calculations and the experimental data demonstrate the ability of the present computational model to predict accurately the steady and unsteady blade loading, and hence the aerodynamic damping, for each configuration presented.

Author(s):  
Paul J. Petrie-Repar ◽  
Andrew McGhee ◽  
Peter A. Jacobs ◽  
Rowan Gollan

In this paper, analytical maps of aerodynamic damping for a two-dimensional compressor cascade (Standard Configuration 10) are presented. The maps are shown as contour plots of the aerodynamic damping as a function of operating condition. The aerodynamic dampings were calculated by a linearized Navier-Stokes flow solver. The flutter boundaries over a wide range of operating conditions are clearly shown on the damping maps and were found to be strongly dependent on the mode frequency and the mode shape. Extremely low values of negative aerodynamic damping were predicted for some off-design operating conditions where flow separation occurred. A damping map was also constructed based on inviscid flow simulations. There were differences in the viscous and inviscid flutter boundaries particularly at off-design inflow angles. The extremely low values of negative aerodynamic damping were only predicted by the viscous simulations and not the inviscid simulations.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1974
Author(s):  
Jiří Fürst ◽  
Martin Lasota ◽  
Jan Lepicovsky ◽  
Josef Musil ◽  
Jan Pech ◽  
...  

The paper presents a numerical and experimental investigation of the effect of incindence angle offset in a two-dimensional section of a flat blade cascade in a high-speed wind tunnel. The aim of the current work is tp determine the aerodynamic excitation forces and approximation of the unsteady blade-loading function using a quasi-stationary approach. The numerical simulations were performed with an in-house finite-volume code built on the top of the OpenFOAM framework. The experimental data were acquired for regimes corresponding to the numerical setup. The comparison of the computational and experimental results is shown for the static pressure distributions on three blades and upstream and downstream of the cascade. The plot of the aerodynamic moments acting on all five blades shows that the adjacent blades are significantly influenced by the angular offset of the middle blade.


Author(s):  
Earl P. N. Duque ◽  
Michael D. Burklund ◽  
Wayne Johnson

A vortex lattice code, CAMRAD II, and a Reynolds-Averaged Navier-Stoke code, OVERFLOW-D2, were used to predict the aerodynamic performance of a two-bladed horizontal axis wind turbine. All computations were compared with experimental data that was collected at the NASA Ames Research Center 80-by 120-Foot Wind Tunnel. Computations were performed for both axial as well as yawed operating conditions. Various stall delay models and dynamics stall models were used by the CAMRAD II code. Comparisons between the experimental data and computed aerodynamic loads show that the OVERFLOW-D2 code can accurately predict the power and spanwise loading of a wind turbine rotor.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Silvio Chemnitz ◽  
Reinhard Niehuis

Abstract The development and verification of new turbulence models for Reynolds-averaged Navier–Stokes (RANS) equation-based numerical methods require reliable experimental data with a deep understanding of the underlying turbulence mechanisms. High accurate turbulence measurements are normally limited to simplified test cases under optimal experimental conditions. This work presents comprehensive three-dimensional data of turbulent flow quantities, comparing advanced constant temperature anemometry (CTA) and stereoscopic particle image velocimetry (PIV) methods under realistic test conditions. The experiments are conducted downstream of a linear, low-pressure turbine cascade at engine relevant high-speed operating conditions. The special combination of high subsonic Mach and low Reynolds number results in a low density test environment, challenging for all applied measurement techniques. Detailed discussions about influences affecting the measured result for each specific measuring technique are given. The presented time mean fields as well as total turbulence data demonstrate with an average deviation of ΔTu<0.4% and ΔC/Cref<0.9% an extraordinary good agreement between the results from the triple sensor hot-wire probe and the 2D3C-PIV setup. Most differences between PIV and CTA can be explained by the finite probe size and individual geometry.


Author(s):  
B. Grüber ◽  
V. Carstens

This paper presents the numerical results of a code for computing the unsteady transonic viscous flow in a two-dimensional cascade of harmonically oscillating blades. The flow field is calculated by a Navier-Stokes code, the basic features of which are the use of an upwind flux vector splitting scheme for the convective terms (Advection Upstream Splitting Method), an implicit time integration and the implementation of a mixing length turbulence model. For the present investigations two experimentally investigated test cases have been selected in which the blades had performed tuned harmonic bending vibrations. The results obtained by the Navier-Stokes code are compared with experimental data, as well as with the results of an Euler method. The first test case, which is a steam turbine cascade with entirely subsonic flow at nominal operating conditions, is the fourth standard configuration of the “Workshop on Aeroelasticity in Turbomachines”. Here the application of an Euler method already leads to acceptable results for unsteady pressure and damping coefficients and hence this cascade is very appropriate for a first validation of any Navier-Stokes code. The second test case is a highly-loaded gas turbine cascade operating in transonic flow at design and off-design conditions. This case is characterized by a normal shock appearing on the rear part of the blades’s suction surface, and is very sensitive to small changes in flow conditions. When comparing experimental and Euler results, differences are observed in the steady and unsteady pressure coefficients. The computation of this test case with the Navier-Stokes method improves to some extent the agreement between the experiment and numerical simulation.


1987 ◽  
Vol 109 (2) ◽  
pp. 201-209 ◽  
Author(s):  
H. P. Hodson ◽  
R. G. Dominy

The ability of a given blade profile to operate over a wide range of conditions is often of the utmost importance. This paper reports the off-design performance of a low-pressure turbine rotor root section in a linear cascade. Data were obtained using pneumatic probes and surface flow visualization. The effects of incidence (+9, 0, −20 deg), Reynolds (1.5, 2.9, 6.0 × 105), pitch-chord ratio (0.46, 0.56, 0.69), and inlet boundary layer thickness (0.011, 0.022 δ*/C) are discussed. Particular attention is paid to the three dimensionality of the flow field. Significant differences in the detail of the flow occur over the range of operating conditions investigated. It is found that the production of new secondary loss is greatest at lower Reynolds numbers, positive incidence, and the higher pitch-chord ratios.


Author(s):  
Enrico Meli ◽  
Pierluca D’Adamio ◽  
Alice Innocenti ◽  
Lorenzo Marini ◽  
Luca Pugi ◽  
...  

In the present work the authors propose an innovative estimation algorithm for Weigh-in-motion (WIM) applications with the aim of estimating the axle or wheel loads of a generic train composition, starting from indirect track measurements. The WIM algorithm elaborates the set of experimental physical quantities chosen as track inputs, making use of estimation procedures based on least square minimization techniques. To perform an accurate estimation, the algorithm uses a flexible multibody model of the track and the vehicle. The novelty of the proposed solution is the general approach that allows to manage different kinds of measurement station and signal inputs (both experimental data and simulated ones) and the good robustness against numerical noise. The algorithm has been tested under any operating conditions through a wide simulation campaign, obtaining good results. Future developments will be based on the experimental data provided by Ansaldo STS and ECM SpA that supported the research activity.


Author(s):  
Rolf Emunds ◽  
Ian K. Jennions ◽  
Dieter Bohn ◽  
Jochen Gier

This paper deals with the numerical simulation of flow through a 1.5 stage axial flow turbine. The 3-row configuration has been experimentally investigated at the University of Aachen where measurements behind the first vane, the first stage and the full configuration were taken. These measurements allow single blade row computations, to the measured boundary conditions taken from complete engine experiments, or full multistage simulations. The results are openly available inside the framework of ERCOFTAC 1996. There are two separate but interrelated parts to the paper. Firstly, two significantly different Navier-Stokes codes are used to predict the flow around the first vane and the first rotor, both running in isolation. This is used to engender confidence in the code that is subsequently used to model the multiple bladerow tests, the other code is currently only suitable for a single blade row. Secondly, the 1.5 stage results are compared to the experimental data and promote discussion of surrounding blade row effects on multistage solutions.


2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Xu Dong ◽  
Yingjie Zhang ◽  
Ziqing Zhang ◽  
Xingen Lu ◽  
Yanfeng Zhang

Abstract This research presents a series of simulations that investigate the effects of tip clearance on the aeroelastic stability of a wide-chord high-speed transonic fan rotor. The results show that the stall margin and the total pressure ratio decreases as the tip clearance increases. The effect of tip clearance on the blade loading can extend to 30% span. The phase of the influence coefficient without tip clearance is different from that with clearance, which causes the most unstable aerodynamic damping to shift in the nodal diameter. As the clearance increases from 0.25 mm to 2 mm, the damping decreases. The nonmonotonic behavior found by other researchers was not observed in this study. We conclude that the tip clearance affects the aeroelastic stability in two ways. The first is to change the blade loading so that the amplitude of the unsteady pressure increases or decreases, while the phase hardly changes, resulting in changes in aerodynamic damping. The second is to change the local flow so that the unsteady pressure amplitude and the phase change locally.


Author(s):  
G Zuppardi ◽  
A Esposito

The Fay-Riddell formulae, used to compute the heat flux at the stagnation point of spherical bodies in very high speed, laminar flow and dissociating air, have been revived and recast. As these formulae were obtained by fitting a number of results of the original Fay-Riddell computing procedure, which suffered from inaccuracies concerning operative parameters, it is to be expected that these inaccuracies also influence the correctness of the formulae. A sensitivity analysis has been made in order to identify the most critical parameter. Recast formulae have been calibrated using the results of the improved version of the Fay-Riddell computing procedure and then validated both by numerical results of a Navier-Stokes code and by experimental data. For this purpose two sets of heat flux measurements have been made in HEBDAF (high enthalpy blown-down arc facility) at the University of Naples, matching the operating conditions of the formula for a frozen boundary layer and non-catalytic wall. Recast formulae are valid in the range of free-stream total enthalpy between 3 and 37 MJ/kg.


Sign in / Sign up

Export Citation Format

Share Document