Determination of Far-Field Pattern of Rigid Scatterers Using Independent Finite Element Method and Eigenfunction Expansion, Part 2: Nonaxisymmetric Scattering

1996 ◽  
Vol 118 (4) ◽  
pp. 583-590 ◽  
Author(s):  
C. Prabavathi ◽  
C. P. Vendhan

The near- and far-field steady state scattered potentials around a rigid arbitrary obstacle subjected to plane incident wave are computed by FE and eigenfunction expansion approach. The near-field is bounded by a truncation surface which is spherical. The nonaxisymmetric damper equation developed by Bayliss et al. (SIAM J. Appl. Math. Vol. 42, pp. 430–451, 1982) is employed on this surface. The computed FE near-field potential on the truncation boundary is employed as a Dirichlet boundary condition to obtain the expansion coefficients which eventually help in obtaining the complete solution in the entire outer domain including the far-field. The numerical technique is applied to problems of rigid scattering of beam-on- and oblique-incident waves by rigid prolate spheroid and hemispherically capped cylinder and contour plots of far-field scattered potential are presented.

1996 ◽  
Vol 118 (4) ◽  
pp. 575-582 ◽  
Author(s):  
C. P. Vendhan ◽  
C. Prabavathi

The near-field steady state scattered potential around a rigid scatterer subjected to plane incident wave is computed using the finite element method with radiation boundary dampers on a finite truncation boundary. Then the solution in the outer domain is sought in the form of an eigenfunction expansion and the expansion coefficients are obtained using the finite element solution on the truncation boundary as Dirichlet boundary condition. The scattered far-field pattern is derived from this solution for prolate spheroid and hemispherically capped cylinder problems.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1431
Author(s):  
Ilkyu Kim ◽  
Sun-Gyu Lee ◽  
Yong-Hyun Nam ◽  
Jeong-Hae Lee

The development of biomedical devices benefits patients by offering real-time healthcare. In particular, pacemakers have gained a great deal of attention because they offer opportunities for monitoring the patient’s vitals and biological statics in real time. One of the important factors in realizing real-time body-centric sensing is to establish a robust wireless communication link among the medical devices. In this paper, radio transmission and the optimal characteristics for impedance matching the medical telemetry of an implant are investigated. For radio transmission, an integral coupling formula based on 3D vector far-field patterns was firstly applied to compute the antenna coupling between two antennas placed inside and outside of the body. The formula provides the capability for computing the antenna coupling in the near-field and far-field region. In order to include the effects of human implantation, the far-field pattern was characterized taking into account a sphere enclosing an antenna made of human tissue. Furthermore, the characteristics of impedance matching inside the human body were studied by means of inherent wave impedances of electrical and magnetic dipoles. Here, we demonstrate that the implantation of a magnetic dipole is advantageous because it provides similar impedance characteristics to those of the human body.


2014 ◽  
Vol 578-579 ◽  
pp. 445-455
Author(s):  
Mustapha Demidem ◽  
Remdane Boutemeur ◽  
Abderrahim Bali ◽  
El-Hadi Benyoussef

The main idea of this paper is to present a smart numerical technique to solve structural and non-structural problems in which the domain of interest extends to large distance in one or more directions. The concerned typical problems may be the underground excavation (tunneling or mining operations) and some heat transfer problems (energy flow rate for construction panels). The proposed numerical technique is based on the coupling between the finite element method (M.E.F.) and the infinite element method (I.E.M.) in an attractive manner taking into consideration the advantages that both methods offer with respect to the near field and the far field (good accuracy and sensible reduction of equations to be solved). In this work, it should be noticed that the using of this numerical coupling technique, based on the infinite element ascent formulation, has introduced a more realistic and economic way to solve unbounded problems for which modeling and efficiency have been elegantly improved. The types of the iso-parametric finite elements used are respectively the eight-nodes (Q8) and the four-nodes (Q4) for the near field. However, for the far field the iso-parametric infinite elements used are the eight-nodes (Q8I) and the six-nodes (Q6I).


2012 ◽  
Vol 10 ◽  
pp. 69-73 ◽  
Author(s):  
K. A. Yinusa ◽  
C. H. Schmidt ◽  
T. F. Eibert

Abstract. Near-field measurements are established techniques to obtain the far-field radiation pattern of an Antenna Under Test via near-field measurements and subsequent near-field far-field transformation. For measurements acquired in echoic environments, additional post-processing is required to eliminate the effects of multipath signals in the resulting far-field pattern. One of such methods models the measurement environment as a multiple source scenario whereby the collected near-field data is attributed to the AUT and some scattering centers in the vicinity of the AUT. In this way, the contributions of the AUT at the probe can be separated from those of the disturbers during the near-field far-field transformation if the disturber locations are known. In this paper, we present ways of modeling the scattering centers on equivalent surfaces such that echo suppression is possible with only partial or no information about the geometry of the scatterers.


2021 ◽  
Author(s):  
◽  
Farzaneh Fadakar Masouleh

<p>Conventional optics suffer from a fundamental resolution limit due to the nature of light. The near-field superlens concept was introduced two decades ago, and its theory for enabling high resolution imaging is well-established now. Initially, this superlens, which has a simple setup, became a hot topic given the proposition of overcoming the diffraction limit. It has been demonstrated that a near-field superlens can reconstruct images using evanescent waves emanating from small objects by means of resonant excitations on the surface of the superlens. A modified version of the superlens named the far-field superlens is theorized to be able to project the near-field subwavelength information to the far-field region. By design, the far-field superlens is a near-field superlens with nanostructures added on top of it. These nanostructures, referred to as diffraction gratings help couple object information available in the evanescent waves to the far-field. Work reported in this thesis is divided to two major sections. The first describes the modelling technique that investigates the performance of a far-field superlens. This section focuses on evaluating the impact of the diffraction gratings geometry and the object size on the far-field superlens performance as well as the resulting far-field pattern. It was shown that a far-field superlens with a nanograting having a duty cycle of 40% to 50% produces the maximum intensity and contrast in the far-field interactions. For periodic rectangular objects, an inverse-trapezoidal nanograting was shown to provide the best contrast and intensity for far-field interactions. The minimal simulation domain to model a symmetric far-field superlens design was determined both in 2D and 3D. This input reduced the required modelling time and resources. Finally, a 3D far-field superlens model was proposed, and the effect of light polarization on the far-field pattern was studied. The second section of this thesis contains the experimental study that explores a new material as a potential candidate for the construction of far-field superlens. The material conventionally used for superlens design is silver, as its plasmonic properties are well-established. However, scaling down silver features to the nanoscale introduces fundamental fabrication challenges. Furthermore, silver oxidizes due to its reactions with sulphur compounds at ambient conditions, which means that operating a silver far-field superlens is only possible in a well-controlled environment. This disagrees with our proposed concept of a low-cost and robust superlens imaging device. On the other hand, highly doped semiconductors are emerging candidates for plasmonic applications due to the possibility of tuning their optical and electrical properties during the fabrication process. While the working principle of a superlens is independent of the plasmonic material of choice, every plasmonic material has a particular range of operating wavelengths. The pros and cons of each plasmonic material are usually identified once used experimentally. In this work, aluminium-doped zinc oxide was the proposed material of choice for the far-field superlens design. The second part of this thesis details the characterization results of the optical, electrical and structural properties of this proposed alternative. Our aluminium-doped zinc oxide samples were highly transparent for large parts of the spectrum. Their carrier concentration was of the order of 10+20 cm-3, and a resistivity of about 10-3 Ω.cm was achieved. The modelled dielectric permittivity for the studied samples showed a cross-over frequency in the near-infrared region, with the highest plasma frequency achieved in this study being 4710 cm-1.</p>


1983 ◽  
Vol 27 (01) ◽  
pp. 56-74
Author(s):  
Frederick Stern ◽  
William S. Vorus

A method is presented which provides a basis for predicting the nonlinear dynamic behavior of unsteady propeller sheet cavitation. The method separates the fluid velocity potential boundary-value problem into two parts, static and dynamic, which are solved sequentially in a forward time stepping procedure. The static potential problem is for the cavity fixed instantaneously relative to the propeller and the propeller translating through the nonuniform wake field. This problem can be solved by standard methods. The dynamic potential represents the instantaneous reaction of the cavity to the static potential field and thus predicts the cavity's deformation and motion relative to the blade. A solution is obtained for the dynamic potential by using the concepts of slender-body theory to define near-and far-field potentials which are matched to form the complete solution. In the far field, the cavity is represented by a three-dimensional spanwise line distribution of sources. In the near field, the cavity is approximated at each cross section as a semi-ellipse with unknown axes a(t), b(t), and position l(t) along the chord of the foil section. Conditions are derived that determine (a, b, l) by minimizing the square error in satisfying the dynamic boundary condition. These conditions yield the equations of motion of the cavity in the form of three coupled nonlinear second-order ordinary differential equations with time as the independent variable. The theory is presented for the general foil and not specifically for propellers. However, the method incorporates features in its formulation which facilitate its application to marine propellers. The method is demonstrated by using the steady noncavitating potential for the two-dimensional half-body as an approximation to the static potential. Both fixed and unsteady cavities are calculated. The unsteady cavities are calculated by varying the hydrostatic pressure in the half-body pressure field sinusoidally.


Author(s):  
Francesco D'Agostino ◽  
Flaminio Ferrara ◽  
Claudio Gennarelli ◽  
Rocco Guerriero ◽  
Massimo Migliozzi

2015 ◽  
Vol 17 (1) ◽  
pp. 82-90 ◽  
Author(s):  
Tae-Bong Lee ◽  
Min-Nyeon Kim

Purpose – The purpose of this paper is to analyze far and near field emitted field patterns through more exact calculation of the modes formed in finite periodic dielectric gratings. Design/methodology/approach – For the mode calculation, equations are newly defined by applying vertical boundary condition on the assumption that transverse electric modes are generated in the structure. After finding modes, near field patterns are calculated using the wave number and coefficient of the mode. Findings – Additionally, the results from these calculations are compared with that of the rigorous-coupled method. Finally, far field patterns are derived by applying fast Fourier transform to near field patterns and also compared with the results of rigorous-coupled method. Research limitations/implications – For convenience of coordinate, we use rectangular coordinate, though the shape of radome is a hemisphere. Practical implications – In this paper, the authors derive more exact near field patterns without the assumption of infiniteness so that these results can be used practically for a making real frequency-selective structure. Originality/value – Conventional periodic finite dielectric gratings analysis has been done using Floquet–Bloch wave theory, coupled-mode, rigorous-coupled method which is based on the assumption of infiniteness of the structure.


Sign in / Sign up

Export Citation Format

Share Document