Dynamic Loosening and Tightening of a Single-Bolt Assembly

1997 ◽  
Vol 119 (3) ◽  
pp. 311-316 ◽  
Author(s):  
D. P. Hess ◽  
S. V. Sudhirkashyap

Previous analyses of threaded fasteners under vibration are based on static equilibrium conditions with supporting data limited to low frequency loading. Such analyses predict only a net loosening action. This paper presents a dynamic model of a single-bolt assembly with moderate pre-load subjected to axial harmonic vibration. Simulations with this model predict that threaded fasteners can, on the average, loosen or tighten in the presence of vibration; and that the applied vibration, as well as other system parameters, can be tuned so that either action occurs. Measurements from a single-bolt assembly apparatus are presented and compared with the simulations.

Author(s):  
Daniel P. Hess

Abstract Previous analyses of threaded fasteners under vibration are based on static equilibrium conditions with supporting data limited to low frequency loading. Such analyses predict only a net loosening action. This paper presents a dynamic model of a single-bolt assembly with moderate pre-load subjected to axial harmonic vibration. Simulations with this model predict that threaded fasteners can, on the average, loosen or tighten in the presence of vibration; and that the applied vibration, as well as other system parameters, can be tuned so that either action occurs. The model elucidates the nonlinear interaction of friction and vibration of such systems. Measurements from a single-bolt assembly apparatus are presented and compared with the simulations.


1996 ◽  
Vol 118 (3) ◽  
pp. 417-422 ◽  
Author(s):  
D. P. Hess ◽  
K. Davis

Threaded components have found ubiquitous use in many systems and structures. Although frequently overlooked, they represent a complex and often critical design element. One can identify numerous instances where such elements are subjected to vibratory conditions, yet their behavior in such an environment is still poorly understood. In this paper, we report on a series of experiments that were run to examine the motions of threaded fasteners subjected to axial harmonic vibration. The components are loaded by gravity and excited over a broad range of conditions. It is found that significant relative twisting motion can occur both with and against the load. This indicates that threaded components may loosen or tighten in the presence of vibration. It is shown that the direction of twist depends on the frequency and amplitude of the vibratory input as well as various physical parameters. Previous theoretical analyses of threaded components under vibration are based on static equilibrium conditions, and only predict a loosening action, i.e., twist with load. In Part 2 of this paper, a kinematic model is developed which predicts twisting both with and against load as observed in the experiments.


2005 ◽  
Vol 36 (3) ◽  
pp. 431-437 ◽  
Author(s):  
R. König ◽  
Ch. Reigber ◽  
S.Y. Zhu

Robotica ◽  
2018 ◽  
Vol 37 (7) ◽  
pp. 1214-1224 ◽  
Author(s):  
P. Wenger ◽  
D. Chablat

SUMMARYTensegrity mechanisms are composed of rigid and tensile parts that are in equilibrium. They are interesting alternative designs for some applications, such as modeling musculo-skeleton systems. Tensegrity mechanisms are more difficult to analyze than classical mechanisms as the static equilibrium conditions that must be satisfied generally result in complex equations. A class of planar one-degree-of-freedom tensegrity mechanisms with three linear springs is analyzed in detail for the sake of systematic solution classifications. The kinetostatic equations are derived and solved under several loading and geometric conditions. It is shown that these mechanisms exhibit up to six equilibrium configurations, of which one or two are stable, depending on the geometric and loading conditions. Discriminant varieties and cylindrical algebraic decomposition combined with Groebner base elimination are used to classify solutions as a function of the geometric, loading, and actuator input parameters.


2018 ◽  
Vol 10 (11) ◽  
pp. 168781401881066 ◽  
Author(s):  
Wei Wei ◽  
Hongchao Jian ◽  
Qingdong Yan ◽  
Xiaomei Luo ◽  
Xuhong Wu

A nonlinear dynamic model is developed to analyze the stability of a pilot-operated valve-control hydraulic system. The dynamic model includes motion of the valve spool and fluid dynamics in the system. Characteristics such as pressure flow across the valve port and orifices, pressure, and flow rate in valve chambers are taken into consideration. Bifurcation analysis is proposed and examined by numerical simulation results when the feedback orifice diameter changes. The effects of different system parameters such as pilot-operating pressure, spring stiffness, and overlap of inlet port on the stability border of the system are studied by two-dimensional bifurcation analyses. The study identifies that bifurcation can occur in the system and lead to sustained self-excited vibration with parameters in certain region of the parameter space. It suggests that the vibration can be effectively predicted and prevented by selecting system parameters from the asymptotic stable parameter region.


1984 ◽  
Vol 106 (4) ◽  
pp. 387-392
Author(s):  
K.-N. Lee ◽  
A. Seireg

The study reported in this paper deals with the development of a dynamic model for the analysis of elastically supported gyroscopic absorber systems for ship stabilization. The gryoscopes are mounted on elastically supported platforms at the fore and aft ends of the ship to minimize both the roll and pitch movements. Springs and dampers are also utilized between the gyroscope gimbal and the platform. Several design configurations of the absorber are considered. Optimal design procedures are utilized to find the system parameters for best performance in each case. The performance of the resulting optimum absorber shows that introducing the elastic spring and damper between the gimbal and platform has a significant effect on reducing the ship-roll action.


1989 ◽  
Vol 7 (1) ◽  
pp. 85-109 ◽  
Author(s):  
Ronald C. Davidson ◽  
Han S. Uhm

The kinetic stability properties of relativistic nonneutral electron flow in planar diode geometry are examined for extraordinary-mode perturbations about the self-consistent Vlasov equilibrium . Here, the cathode is located at x = 0; the anode is located at x = d the outer edge of the electron layer is located at is the equilibrium flow velocity in the x-direction; n^b is the electron density at the cathode (x = 0); and is the axial magnetic field, with const. in the vacuum region (xb < x ≤ d). The extraordinary-mode eigenvalue equation, derived in a companion paper for low-frequency, long-wavelength perturbations, is solved exactly. This leads to a formal dispersion relation, which can be used to determine the complex eigenfrequency ω over a wide range of system parameters and wavenumber k in the y-direction. The formal dispersion relation is further simplified for and , assuming low-frequency perturbations about a tenuous electron layer with and . Here, , and , where denotes the average equilibrium orbit, and [γ(x) − 1]mc2 is the average kinematic energy of an electron fluid element. The resulting approximate dispersion relation is solved numerically over a wide range of system parameters to determine the detailed dependence of stability properties on electromagnetic effects, layer thickness, and electron energy, as measured by , and γb − 1, respectively. Here, γb = γ(xb) denotes the electron energy at the outer edge of the electron layer. As a general remark, it is found that increasing the electron energy (γb − 1), increasing the strength of electromagnetic effects , and/or decreasing the layer thickness (xb/d) all have a stabilizing influence.


2008 ◽  
Vol 2008 ◽  
pp. 1-14 ◽  
Author(s):  
Douglas Domingues Bueno ◽  
Clayton Rodrigo Marqui ◽  
Rodrigo Borges Santos ◽  
Camilo Mesquita Neto ◽  
Vicente Lopes

This paper deals with the study of algorithms for robust active vibration control in flexible structures considering uncertainties in system parameters. It became an area of enormous interest, mainly due to the countless demands of optimal performance in mechanical systems as aircraft, aerospace, and automotive structures. An important and difficult problem for designing active vibration control is to get a representative dynamic model. Generally, this model can be obtained using finite element method (FEM) or an identification method using experimental data. Actuators and sensors may affect the dynamics properties of the structure, for instance, electromechanical coupling of piezoelectric material must be considered in FEM formulation for flexible and lightly damping structure. The nonlinearities and uncertainties involved in these structures make it a difficult task, mainly for complex structures as spatial truss structures. On the other hand, by using an identification method, it is possible to obtain the dynamic model represented through a state space realization considering this coupling. This paper proposes an experimental methodology for vibration control in a 3D truss structure using PZT wafer stacks and a robust control algorithm solved by linear matrix inequalities.


Sign in / Sign up

Export Citation Format

Share Document