A Combined Heat Clearance Method for Tissue Blood Flow Measurement

1991 ◽  
Vol 113 (4) ◽  
pp. 438-445 ◽  
Author(s):  
Sarit Abramovich-Sivan ◽  
Vili Benary ◽  
Thalia Kaspi ◽  
Solange Akselrod

Tissue Blood Flow is measured by applying a combined procedure of two independent approaches based on heat clearance: the Pulse Decay Method and the Continuous Method. The Pulse Method allows absolute assessment of tissue BF with no need for calibration, and can be applied only if the tissue BF is steady during the period of measurement. On the other hand, the Continuous Method enables the observation of rapid changes in tissue BF, and can be applied under non steady-state conditions. Using the combined method, a continuous quantitative measurement of transient changes in tissue BF can be obtained. For this purpose, we have developed two experimental systems consisting of independent electronic units: a Pulse Unit and a Continuous Unit. A micro-computer with dedicated software controls the operation of the electronic units and calculates tissue BF on-line. In vitro measurements are performed and demonstrate the reliability of the methods. In vivo measurements in rat brain tissue are also performed and include physiological and pharmacological changes of local tissue BF. The results of the two heat clearance methods correlate well with tissue BF values measured by a third independent method, the Hydrogen Clearance Method.

2006 ◽  
Vol 101 (1) ◽  
pp. 307-315 ◽  
Author(s):  
Johan Fredrik Brekke ◽  
William F. Jackson ◽  
Steven S. Segal

Intracellular calcium concentration ([Ca2+]i) governs the contractile status of arteriolar smooth muscle cells (SMC). Although studied in vitro, little is known of SMC [Ca2+]i dynamics during the local control of blood flow. We tested the hypothesis that the rise and fall of SMC [Ca2+]i underlies arteriolar constriction and dilation in vivo. Aparenchymal segments of second-order arterioles (diameter 35 ± 2 μm) were prepared in the superfused cheek pouch of anesthetized hamsters ( n = 18) and perifused with the ratiometric dye fura PE-3 (AM) to load SMC (1 μM, 20 min). Resting SMC [Ca2+]i was 406 ± 37 nM. Elevating superfusate O2 from 0 to 21% produced constriction (11 ± 2 μm) that was unaffected by dye loading; [Ca2+]i increased by 108 ± 53 nM ( n = 6, P < 0.05). Cycling of [Ca2+]i during vasomotion (amplitude, 150 ± 53 nM; n = 4) preceded corresponding diameter changes (7 ± 1 μm) by ∼2 s. Microiontophoresis (1 μm pipette tip; 1 μA, 1 s) of phenylephrine (PE) transiently increased [Ca2+]i by 479 ± 64 nM ( n = 8, P < 0.05) with constriction (26 ± 3 μm). Flushing blood from the lumen with saline increased fluorescence at 510 nm by ∼45% during excitation at both 340 and 380 nm with no difference in resting [Ca2+]i, diameter or respective responses to PE ( n = 7). Acetylcholine microiontophoresis (1 μA, 1 s) transiently reduced resting SMC [Ca2+]i by 131 ± 21 nM ( n = 6, P < 0.05) with vasodilation (17 ± 1 μm). Superfusion of sodium nitroprusside (10 μM) transiently reduced SMC [Ca2+]i by 124 ± 18 nM ( n = 6, P < 0.05), whereas dilation (23 ± 5 μm) was sustained. Resolution of arteriolar SMC [Ca2+]i in vivo discriminates key signaling events that govern the local control of tissue blood flow.


2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S198-S198
Author(s):  
Joseph R Meno ◽  
Thien-son K Nguyen ◽  
Elise M Jensen ◽  
G Alexander West ◽  
Leonid Groysman ◽  
...  

Dor on line ◽  
2016 ◽  
Author(s):  
Paulo Barboni
Keyword(s):  

Edição de Março de 2016 - Ano 16 - Número 188   Olá, leitores! Epigenética e dor é o tema de nosso editorial desse mês. Na seção de Divulgação Científica, trazemos alertas tratando de assuntos como o uso da pupilometria na avaliação da analgesia opioide; a relação do excesso de trabalho e a lombalgia; novas propostas de analgésicos, inclusive em serviços de música on line; e mais um artigo ligado ao “Ano de Combate à Dor Articular”. Na seção de Ciência e Tecnologia, trazemos alertas tratando da inibição da via da tetrahidrobiopterina; a identificação de um fator ligado à proliferação microglial em nervos lesionados; um alvo proteico ligado ao estresse e dor crônica e um novo tipo de priming hiperalgésico. Boa Leitura!   Editorial Participação de mecanismos epigenéticos na dor crônica: uma crescente área de investigação Andreza Urba de Quadros   Divulgação Científica Movimento da pupila pode predizer redução da dor pela administração de opioides. Pupilometria auxilia no tratamento da dor. Alexandre Hashimoto Pereira Lopes Dor nas costas aumenta em pessoas viciadas em trabalho. Você é um workaholic? Se sim, cuidado! Dênis Augusto Santana Reis Analgésicos potentes para o alívio da dor. Pesquisa mostra o efeito de análogos às endomorfinas administrados para aliviar a dor. Andressa Daiane de Carvalho Zaparolli Dorflex cria 'analgésico musical'. O uso de uma terapia musical pode funcional como um tratamento complementar ao tratamento farmacológico. Dênis Augusto Santana Reis Prescrição e efeito total da utilização de analgésicos, hipnóticos, antidepressivos e ansiolíticos. Resultado proveniente de uma população total de pacientes com artroplastia no quadril. Ana Carolina Alves M. de Moura   Ciência e Tecnologia Redução da dor inflamatória e neuropática através da inibição da via da tetrahidrobiopterina (BH4). Pesquisadores desenvolveram um inibidor da via de BH4 capaz de reduzir a dor crônica sem causar tolerância e efeitos adversos. Flávia Viana Santa-Ceclília CSF-1 derivado do nervo sensorial lesionado induz proliferação microglial e dor via dependente de DAP12. Neurônios sensoriais lesionados ativam a micróglia. Miriam das Dores Mendes Fonseca Avaliação in vivo e in vitro dos efeitos da Urtica dioica e natação em fatores do diabetes. A Urtiga é utilizada como planta medicinal para o tratamento de diversas patologias. Erika Ivanna Araya Pallarés Proteína FKBP51, envolvida na resposta do organismo ao estresse, envolvida na origem da dor crônica. Proteína FKBP51 como um possível alvo terapêutico para o tratamento da dor crônica. Sabrina Francesca de Souza Lisboa Agonista do receptor adenosina-a1 induz sensibilização hiperalgésica tipo II. Modelo de cronificação da dor. Thatiane Sandielen Lima Soares


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Jie Deng ◽  
Marco Tulio Angulo ◽  
Serguei Saavedra

AbstractMicrobes form multispecies communities that play essential roles in our environment and health. Not surprisingly, there is an increasing need for understanding if certain invader species will modify a given microbial community, producing either a desired or undesired change in the observed collection of resident species. However, the complex interactions that species can establish between each other and the diverse external factors underlying their dynamics have made constructing such understanding context-specific. Here we integrate tractable theoretical systems with tractable experimental systems to find general conditions under which non-resident species can change the collection of resident communities—game-changing species. We show that non-resident colonizers are more likely to be game-changers than transients, whereas game-changers are more likely to suppress than to promote resident species. Importantly, we find general heuristic rules for game-changers under controlled environments by integrating mutual invasibility theory with in vitro experimental systems, and general heuristic rules under changing environments by integrating structuralist theory with in vivo experimental systems. Despite the strong context-dependency of microbial communities, our work shows that under an appropriate integration of tractable theoretical and experimental systems, it is possible to unveil regularities that can then be potentially extended to understand the behavior of complex natural communities.


Blood ◽  
2008 ◽  
Vol 112 (4) ◽  
pp. 1056-1067 ◽  
Author(s):  
Mira T. Kassouf ◽  
Hedia Chagraoui ◽  
Paresh Vyas ◽  
Catherine Porcher

Abstract Dissecting the molecular mechanisms used by developmental regulators is essential to understand tissue specification/differentiation. SCL/TAL-1 is a basic helix-loop-helix transcription factor absolutely critical for hematopoietic stem/progenitor cell specification and lineage maturation. Using in vitro and forced expression experimental systems, we previously suggested that SCL might have DNA-binding–independent functions. Here, to assess the requirements for SCL DNA-binding activity in vivo, we examined hematopoietic development in mice carrying a germline DNA-binding mutation. Remarkably, in contrast to complete absence of hematopoiesis and early lethality in scl-null embryos, specification of hematopoietic cells occurred in homozygous mutant embryos, indicating that direct DNA binding is dispensable for this process. Lethality was forestalled to later in development, although some mice survived to adulthood. Anemia was documented throughout development and in adulthood. Cellular and molecular studies showed requirements for SCL direct DNA binding in red cell maturation and indicated that scl expression is positively autoregulated in terminally differentiating erythroid cells. Thus, different mechanisms of SCL's action predominate depending on the developmental/cellular context: indirect DNA binding activities and/or sequestration of other nuclear regulators are sufficient in specification processes, whereas direct DNA binding functions with transcriptional autoregulation are critically required in terminal maturation processes.


Metals ◽  
2016 ◽  
Vol 6 (3) ◽  
pp. 71 ◽  
Author(s):  
Johanna Ollig ◽  
Veronika Kloubert ◽  
Inga Weßels ◽  
Hajo Haase ◽  
Lothar Rink
Keyword(s):  

Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Yedan Liu ◽  
Shaoxun Wang ◽  
Ya Guo ◽  
Huawei Zhang ◽  
Richard Roman ◽  
...  

Diabetes is the primary pathological factor attributed to Alzheimer’s disease and vascular cognitive impairment. Previous studies demonstrated that hyperglycemia promoted oxidative stress in the cerebral vasculature. Cerebrovascular pericytes contribute to maintaining blood-brain barrier (BBB) integrity and regulating cerebral blood flow (CBF). However, whether hyperglycemia diminishes the contractile capability of pericytes, impairs CBF autoregulation and increases BBB permeability are unclear. In the present study, we examined the role of pericytes in cerebrovascular function and cognition in diabetes using cell culture in vitro , isolated penetrating arterioles ex vivo and CBF autoregulation in vivo . Reactive oxygen species were elevated in high glucose (HG, 30 mM) treated vs. normal glucose (NG, 5.5 mM) treated pericytes. Further, mitochondrial superoxide production was increased in HG-treated vs. NG-treated group (13.24 ± 1.01 arbitrary unit (a.u.)/30min vs. 6.98 ± 0.36 a.u./30min). Mitochondrial respiration decreased in HG-treated vs. NG-treated pericytes (3718 ± 185.9 pmol/min/mg, n=10 vs. 4742 ± 284.5 pmol/min/mg, n=10) as measured by a Seahorse XFe24 analyzer. HG-treated pericytes displayed fragmented mitochondria in association with increased fission protein (DRP1) and decreased fusion protein (OPA1) expression. HG-treated pericytes displayed lower contractile capability than NG-treated cells (20.23 ± 7.15% vs. 29.46 ± 9.41%). The myogenic response was impaired in penetrating arterioles isolated from diabetic rats in comparison with non-diabetic rats. Autoregulation of CBF measured by a laser Doppler flowmeter was impaired in diabetic rats compared with non-diabetic rats. Diabetic rats exhibited greater BBB leakage than control rats. The cognitive function was examined using an eight-arm water maze. Diabetic rats took longer time to escape than the non-diabetic rats indicating learning and memory deficits. In conclusion, hyperglycemia induces pericyte dysfunction by altering mitochondrial dynamics and diminishing contractile capability, which promotes BBB leakage, decreases CBF autoregulation and contributes to diabetes-related dementia.


2011 ◽  
Vol 110 (3) ◽  
pp. 695-704 ◽  
Author(s):  
Danielle J. McCullough ◽  
Robert T. Davis ◽  
James M. Dominguez ◽  
John N. Stabley ◽  
Christian S. Bruells ◽  
...  

With advancing age, there is a reduction in exercise tolerance, resulting, in part, from a perturbed ability to match O2 delivery to uptake within skeletal muscle. In the spinotrapezius muscle (which is not recruited during incline treadmill running) of aged rats, we tested the hypotheses that exercise training will 1) improve the matching of O2 delivery to O2 uptake, evidenced through improved microvascular Po2 (PmO2), at rest and throughout the contractions transient; and 2) enhance endothelium-dependent vasodilation in first-order arterioles. Young (Y, ∼6 mo) and aged (O, >24 mo) Fischer 344 rats were assigned to control sedentary (YSED; n = 16, and OSED; n = 15) or exercise-trained (YET; n = 14, and OET; n = 13) groups. Spinotrapezius blood flow (via radiolabeled microspheres) was measured at rest and during exercise. Phosphorescence quenching was used to quantify PmO2 in vivo at rest and across the rest-to-twitch contraction (1 Hz, 5 min) transition in the spinotrapezius muscle. In a follow-up study, vasomotor responses to endothelium-dependent (acetylcholine) and -independent (sodium nitroprusside) stimuli were investigated in vitro. Blood flow to the spinotrapezius did not increase above resting values during exercise in either young or aged groups. Exercise training increased the precontraction baseline PmO2 (OET 37.5 ± 3.9 vs. OSED 24.7 ± 3.6 Torr, P < 0.05); the end-contracting PmO2 and the time-delay before PmO2 fell in the aged group but did not affect these values in the young. Exercise training improved maximal vasodilation in aged rats to acetylcholine (OET 62 ± 16 vs. OSED 27 ± 16%) and to sodium nitroprusside in both young and aged rats. Endurance training of aged rats enhances the PmO2 in a nonrecruited skeletal muscle and is associated with improved vascular smooth muscle function. These data support the notion that improvements in vascular function with exercise training are not isolated to the recruited muscle.


Sign in / Sign up

Export Citation Format

Share Document