Active Control of Flexible Structures Subject to Distributed and Seismic Disturbances

1993 ◽  
Vol 115 (4) ◽  
pp. 649-657 ◽  
Author(s):  
Akira Ohsumi ◽  
Yuichi Sawada

The purpose of this paper is to present a method of active control for suppressing the vibration of a mechanically flexible cantilever beam which is subject to a distributed random disturbance and also a seismic input at the clamped end. First, the mathematical model of the flexible structure is established by a stochastic partial differential equation which describes the Euler-Bernoulli type distributed parameter system with internal viscous damping and subject to the seismic and distributed random inputs. Second, the distributed parameter model, which is considered as an infinite-dimensional system, is reduced to a finite-dimensional one by using the modal expansion, and split into the controlled part and the uncontrolled (residual) one. The principal approach is to regard the observation spillover due to uncontrolled part as a colored observation noise and construct an estimator, and then we construct the optimal control system. Finally, simulation studies are presented by using a real earthquake accelerogram data.

Author(s):  
Andreas Rauh ◽  
Luise Senkel ◽  
Harald Aschemann ◽  
Vasily V. Saurin ◽  
Georgy V. Kostin

Abstract In this paper, control-oriented modeling approaches are presented for distributed parameter systems. These systems, which are in the focus of this contribution, are assumed to be described by suitable partial differential equations. They arise naturally during the modeling of dynamic heat transfer processes. The presented approaches aim at developing finite-dimensional system descriptions for the design of various open-loop, closed-loop, and optimal control strategies as well as state, disturbance, and parameter estimation techniques. Here, the modeling is based on the method of integrodifferential relations, which can be employed to determine accurate, finite-dimensional sets of state equations by using projection techniques. These lead to a finite element representation of the distributed parameter system. Where applicable, these finite element models are combined with finite volume representations to describe storage variables that are—with good accuracy—homogeneous over sufficiently large space domains. The advantage of this combination is keeping the computational complexity as low as possible. Under these prerequisites, real-time applicable control algorithms are derived and validated via simulation and experiment for a laboratory-scale heat transfer system at the Chair of Mechatronics at the University of Rostock. This benchmark system consists of a metallic rod that is equipped with a finite number of Peltier elements which are used either as distributed control inputs, allowing active cooling and heating, or as spatially distributed disturbance inputs.


2014 ◽  
Vol 657 ◽  
pp. 874-878
Author(s):  
Sever Şerban ◽  
Doina Corina Şerban

This article analyses the process of warming a metal by using a walking beam furnace. This process is meant to offer the technologist objective information that may allow him to produce eventual modifications of the temperature references from the furnaces zones. Thus making the metals temperature at the furnaces exit to have an imposed distribution, within precise limits, according to the technological requests. This industrial process has a geometrical parameters distribution, more precisely it can be described through a partial differential equation, by being attached to dynamic infinite dimensional systems (or with distributed parameters). Using a procedure called geometric-time discretization (in the condition of the solutions convergence), we have managed to obtain a representation under the form of a finite discrete dimensional linear system for a process with distributed parameters.


Volume 1 ◽  
2004 ◽  
Author(s):  
Clarice Wagner-Nachshoni ◽  
Yoram Halevi

A method of noncollocated controller design for non-uniform flexible structures, governed by the wave equation, is proposed. An exact, infinite dimensional, transfer function, relating the actuation and measurement points, with general boundary conditions, is derived for the multi-link case. Three modeling methods are presented and discussed. A key element of the model is the existence of time delays, due to the wave motion, which play a major role in the controller design. The design consists of two stages. First an inner rate loop is closed in order to improve the system dynamic behavior. It leads to a finite dimensional plus delay inner closed loop, which is the equivalent plant for the outer loop. In the second stage an outer noncollocated position loop is closed. It has the structure of an observer–predictor control scheme to compensate for the response delay. The resulting overall transfer function is second order, with arbitrarily assigned dynamics, plus delay.


2016 ◽  
Vol 82 (3) ◽  
Author(s):  
J. W. Burby

Existing high-order variational drift kinetic theories contain unphysical rapidly varying modes that are not seen at low orders. These unphysical modes, which may be rapidly oscillating, damped or growing, are ushered in by a failure of conventional high-order drift kinetic theory to preserve the structure of its parent model’s initial value problem. In short, the (infinite dimensional) system phase space is unphysically enlarged in conventional high-order variational drift kinetic theory. I present an alternative, ‘renormalized’ variational approach to drift kinetic theory that manifestly respects the parent model’s initial value problem. The basic philosophy underlying this alternate approach is that high-order drift kinetic theory ought to be derived by truncating the all-orders system phase-space Lagrangian instead of the usual ‘field$+$particle’ Lagrangian. For the sake of clarity, this story is told first through the lens of a finite-dimensional toy model of high-order variational drift kinetics; the analogous full-on drift kinetic story is discussed subsequently. The renormalized drift kinetic system, while variational and just as formally accurate as conventional formulations, does not support the troublesome rapidly varying modes.


2010 ◽  
Vol 25 (30) ◽  
pp. 5567-5594 ◽  
Author(s):  
MARCOS A. G. GARCÍA ◽  
ALEXANDER V. TURBINER

The quantum H3 integrable system is a three-dimensional system with rational potential related to the noncrystallographic root system H3. It is shown that the gauge-rotated H3 Hamiltonian as well as one of the integrals, when written in terms of the invariants of the Coxeter group H3, is in algebraic form: it has polynomial coefficients in front of derivatives. The Hamiltonian has infinitely-many finite-dimensional invariant subspaces in polynomials, they form the infinite flag with the characteristic vector [Formula: see text]. One among possible integrals is found (of the second order) as well as its algebraic form. A hidden algebra of the H3 Hamiltonian is determined. It is an infinite-dimensional, finitely-generated algebra of differential operators possessing finite-dimensional representations characterized by a generalized Gauss decomposition property. A quasi-exactly-solvable integrable generalization of the model is obtained. A discrete integrable model on the uniform lattice in a space of H3-invariants "polynomially"-isospectral to the quantum H3 model is defined.


2007 ◽  
Vol 2007 ◽  
pp. 1-19 ◽  
Author(s):  
Alexander Zuyev ◽  
Oliver Sawodny

A control system describing the dynamics of a rotating Timoshenko beam is considered. We assume that the beam is driven by a control torque at one of its ends, and the other end carries a rigid body as a load. The model considered takes into account the longitudinal, vertical, and shear motions of the beam. For this distributed parameter system, we construct a family of Galerkin approximations based on solutions of the homogeneous Timoshenko beam equation. We derive sufficient conditions for stabilizability of such finite dimensional system. In addition, the equilibrium of the Galerkin approximation considered is proved to be stabilizable by an observer-based feedback law, and an explicit control design is proposed.


Author(s):  
Li Ma ◽  
Changpin Li

Dimension reduction of dynamical system is a significant issue for technical applications, as regards both finite dimensional system and infinite dimensional systems emerging from either science or engineering. Center manifold method is one of the main reduction methods for ordinary differential systems (ODSs). Does there exists a similar method for fractional ODSs (FODSs)? In other words, does there exists a method for reducing the high-dimensional FODS into a lower-dimensional FODS? In this study, we establish a local fractional center manifold for a finite dimensional FODS. Several examples are given to illustrate the theoretical analysis.


2017 ◽  
Vol 24 (12) ◽  
pp. 2656-2670 ◽  
Author(s):  
Teerawat Sangpet ◽  
Suwat Kuntanapreeda ◽  
Rüdiger Schmidt

Flexible structures have been increasingly utilized in many applications because of their light-weight and low production cost. However, being flexible leads to vibration problems. Vibration suppression of flexible structures is a challenging control problem because the structures are actually infinite-dimensional systems. In this paper, an adaptive control scheme is proposed for the vibration suppression of a piezo-actuated flexible beam. The controller makes use of the configuration of the prominent proportional-integral-derivative controller and is derived using an infinite-dimensional Lyapunov method. In contrast to existing schemes, the present scheme does not require any approximated finite-dimensional model of the beam. Thus, the stability of the closed loop system is guaranteed for all vibration modes. Experimental results have illustrated the feasibility of the proposed control scheme.


2016 ◽  
Vol 14 ◽  
pp. 51-54 ◽  
Author(s):  
Harry Weber ◽  
Wolfgang Mathis

Abstract. In this contribution, the limitations of the Carleman linearization approach are presented and discussed. The Carleman linearization transforms an ordinary nonlinear differential equation into an infinite system of linear differential equations. In order to transform the nonlinear differential equation, orthogonal polynomials which represent solutions of a Sturm–Liouville problem are used as basis. The determination of the time derivate of this basis yields an infinite dimensional linear system that depends on the considered nonlinear differential equation. The infinite linear system has the same properties as the nonlinear differential equation such as limit cycles or chaotic behavior. In general, the infinite dimensional linear system cannot be solved. Therefore, the infinite dimensional linear system has to be approximated by a finite dimensional linear system. Due to limitation of dimension the solution of the finite dimensional linear system does not represent the global behavior of the nonlinear differential equation. In fact, the accuracy of the approximation depends on the considered nonlinear system and the initial value. The idea of this contribution is to adapt the range of validity for the Carleman linearization in order to increase the accuracy of the approximation for different ranges of initial values. Instead of truncating the infinite dimensional system after a certain order a Taylor series approach is used to approximate the behavior of the nonlinear differential equation about different equilibrium points. Thus, the adapted finite linear system describes the local behavior of the solution of the nonlinear differential equation.


Sign in / Sign up

Export Citation Format

Share Document