Application of a Unified Constitutive Theory to the Nonproportional Multiaxial Strain Deformation of 1045 Steel

1992 ◽  
Vol 114 (2) ◽  
pp. 147-155 ◽  
Author(s):  
J. A. Sherwood ◽  
E. M. Fay

An automated procedure for the determination of the material constants in a constitutive equation which is used to model the multiaxial nonlinear material behavior of isotropic materials is discussed. The material model used in this research is a unified theory where the time-dependent strain (creep) and time-independent strain (plasticity) are treated as one (unified) inelastic strain. The flow equation considers the inelastic rate of strain and it is assumed that inelastic strain is present at all levels of stress. Application of the model to proportional and nonproportional biaxial loadings is presented.

2015 ◽  
Vol 784 ◽  
pp. 95-103
Author(s):  
Holm Altenbach ◽  
Frank Laengler ◽  
Konstantin Naumenko ◽  
Mykola Ievdokymov

High-temperature components, for example turbochargers, are often subject to complex thermal and mechanical loading paths. Non-uniform temperature distribution and constraints by neighboring components result in complex timely varying stress and strain states during operation. In this paper the inelastic behavior of a casting material Ni-resist D-5S in a wide stress, strain rate and temperature ranges is analyzed. The material model including a constitutive equation for the inelastic strain rate tensor, a non-linear kinematic hardening rule and a damage evolution equation is developed. To calibrate the model, experimental databases from creep and low cycle fatigue (LCF) tests are applied. For the verification of the model, simulations of the material behavior under uni-axial thermo-mechanical fatigue (TMF) loading conditions are performed. The results for the stress response and lifetime are compared with experimental data.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1338
Author(s):  
Jakub Kraľovanec ◽  
Martin Moravčík ◽  
Petra Bujňáková ◽  
Jozef Jošt

A diagnostic survey on the precast prestressed bridge Nižná confirmed significant deterioration due to environmental distress. Evidently, decisive failures of the structure have a similar character as in the previous precast prestressed bridge in Podbiel in the northern part of Slovakia. These failures result from the unsuitable concept of the first generation of precast prestressed concrete beams, which was used in the former Czechoslovakia in the second half of the 20th century. Subsequently, experimental verification using the proof-load test was also executed. This bridge was built in 1956, so at the time of testing, it was 60 years old. The paper presents the indirect determination of prestressing level in one precast post-tensioned concrete beam using the saw-cut method. Experimental measurement was executed during the bridge demolition. Subsequently, a 2D numerical model in ATENA 2D Software, with the assumption of nonlinear material behavior for verification of experimental results, was performed. Finally, the residual prestressing force was evaluated and compared with the expected state of prestressing according to Eurocodes after 60 years of service.


1985 ◽  
Vol 52 (3) ◽  
pp. 621-628 ◽  
Author(s):  
J. L. Ding ◽  
W. N. Findley

Experimental data on the creep behavior of 2618-T61 aluminum alloy under nonproportional loadings are presented. Among the important findings are the anisotropy induced by creep strain, synergistic effects during creep recovery, and strongly nonlinear material behavior at high stress levels. Data were compared with two theoretical models, a viscous-viscoelastic (VV) model and a viscoplastic (VP) model. In the VV model the time-dependent strain was decomposed into recoverable (viscoelastic) and nonrecoverable components. The VP model differs from the VV model in that all the time-dependent strain is assumed nonrecoverable. In each model, three viscoplastic flow rules based on different hardening natures, namely, isotropic strain hardening, kinematic hardening, and independent strain hardening were derived to describe the time-dependent nonrecoverable strain component, and compared with experiments. The viscoelastic component in the VV model was represented by the third-order multiple integral representation combined with the modified superposition principle. Predictions for all theories used material constants obtained from creep and recovery data only. Possible causes for the discrepancies between theories and experimental data were discussed. Further experimental and theoretical work necessary for the study of the time-dependent material behavior at high temperature were also suggested.


2019 ◽  
Vol 19 (3) ◽  
pp. 861-874 ◽  
Author(s):  
Monika Stipsitz ◽  
Philippe K. Zysset ◽  
Dieter H. Pahr

AbstractAn efficient solver for large-scale linear $$\mu \hbox {FE}$$μFE simulations was extended for nonlinear material behavior. The material model included damage-based tissue degradation and fracture. The new framework was applied to 20 trabecular biopsies with a mesh resolution of $${36}\,{{\upmu }\hbox {m}}$$36μm. Suitable material parameters were identified based on two biopsies by comparison with axial tension and compression experiments. The good parallel performance and low memory footprint of the solver were preserved. Excellent correlation of the maximum apparent stress was found between simulations and experiments ($$R^2 > 0.97$$R2>0.97). The development of local damage regions was observable due to the nonlinear nature of the simulations. A novel elasticity limit was proposed based on the local damage information. The elasticity limit was found to be lower than the 0.2% yield point. Systematic differences in the yield behavior of biopsies under apparent compression and tension loading were observed. This indicates that damage distributions could lead to more insight into the failure mechanisms of trabecular bone.


2018 ◽  
Vol 8 (8) ◽  
pp. 1354 ◽  
Author(s):  
Bilen Abali

Biological and polymer-type materials usually show a complicated deformation behavior. This behavior can be modeled by using a nonlinear material equation; however, the determination of coefficients in such a material equation is challenging. We exploit representation theorems in continuum mechanics and construct nonlinear material equations for cellulose in an oscillatory rheometer experiment. The material parameters are obtained by using the energy-based method that generates a linear regression fit even in the case of a highly nonlinear material equation. This method allows us to test different nonlinear material equations and choose the simplest material model capable of representing the nonlinear response over a broad range of frequencies and amplitudes. We present the strategy, determine the parameters for cellulose, discuss the complicated stress-strain response and make the algorithm publicly available to encourage its further use.


2014 ◽  
Vol 12 (2) ◽  
Author(s):  
Kirana Kumara P

In this work, possibility of simulating biological organs in realtime using the Boundary Element Method (BEM) is investigated. Biological organs are assumed to follow linear elastostatic material behavior, and constant boundary element is the element type used.  First, a Graphics Processing Unit (GPU) is used to speed up the BEM computations to achieve the realtime performance. Next, instead of the GPU, a computer cluster is used.  Results indicate that BEM is fast enough to provide for realtime graphics if biological organs are assumed to follow linear elastostatic material behavior. Although the present work does not conduct any simulation using nonlinear material models, results from using the linear elastostatic material model imply that it would be difficult to obtain realtime performance if highly nonlinear material models that properly characterize biological organs are used. Although the use of BEM for the simulation of biological organs is not new, the results presented in the present study are not found elsewhere in the literature.


2011 ◽  
Vol 70 ◽  
pp. 225-230 ◽  
Author(s):  
Agnieszka Derewonko ◽  
Andrzej Kiczko

The purpose of this paper is to describe the selection process of a rubber-like material model useful for simulation behaviour of an inflatable air cushion under multi-axial stress states. The air cushion is a part of a single segment of a pontoon bridge. The air cushion is constructed of a polyester fabric reinforced membrane such as Hypalon®. From a numerical point of view such a composite type poses a challenge since numerical ill-conditioning can occur due to stiffness differences between rubber and fabric. Due to the analysis of the large deformation dynamic response of the structure, the LS-Dyna code is used. Since LS-Dyna contains more than two-hundred constitutive models the inverse method is used to determine parameters characterizing the material on the base of results of the experimental test.


2015 ◽  
Vol 813-814 ◽  
pp. 106-110
Author(s):  
Dalbir Singh ◽  
C. Ganesan ◽  
A. Rajaraman

Composites are being used in variety of applications ranging from defense and aircraft structures, where usage is profuse, to vehicle structures and even for repair and rehabilitation. Most of these composites are made of different laminates glued together with matrix for binding and now-a-days fibers of different types are embedded in a composite matrix. The characterizations of material properties of composites are mostly experimental with analytical modeling used to simulate the system behavior. But many times, the composites develop damage or distress in the form of cracking while they are in service and this adds a different dimension as one has to evaluate the response with the damage so that its performance during its remaining life is satisfactory. This is the objective of the present study where a hybrid approach using experimental results on damaged specimens and then analytical finite element are used to evaluate response. This will considerably help in remaining life assessment-RLA- for composites with damage so that design effectiveness with damage could be assessed. This investigation has been carried out on a typical composite with carbon fiber reinforcements, manufactured by IPCL Baroda (India) with trade name INDCARF-30. Experimental studies were conducted on undamaged and damaged specimens to simulate normal continuous loading and discontinuous loading-and-unloading states in actual systems. Based on the experimental results, material characterization inputs are taken and analytical studies were carried out using ANSYS to assess the response under linear and nonlinear material behavior to find the stiffness decay. Using stiffness decay RLA was computed and curves are given to bring the influence of type of damage and load at which damage had occurred.


1983 ◽  
Vol 50 (4a) ◽  
pp. 740-742 ◽  
Author(s):  
B. Stora˚kers

The classical Fo¨ppl equations, governing the deflection of plane membranes, constitute the first-order consistent approximation in the case of linear elastic material behavior. It is shown that despite the static and kinematic nonlinearities present, for arbitrary load histories a correspondence principle for viscoelastic material behavior exists if all relevant relaxation moduli are of uniform time dependence. Application of the principle is illustrated by means of a popular material model.


Sign in / Sign up

Export Citation Format

Share Document