Mixed Convective Heat Transfer From a Simulated Microchip to Liquid Flows in a Horizontal Rectangular Channel

1991 ◽  
Vol 113 (3) ◽  
pp. 309-312 ◽  
Author(s):  
Y. Chin ◽  
C. F. Ma ◽  
X. Q. Gu ◽  
L. Xu

Mixed convection from a small heater (5mm × 5mm) to liquid flows in a horizontal rectangular channel is investigated experimentally. The results of three cases in which the buoyancy is normal to the liquid flow directions — hot surface facing upward, facing downward and vertically attached to one wall of the channel — are presented. Correlations are also provided to predict the mixed convective effects in the range 100 < ReL < 4000. The results demonstrated that both the Reynolds number ReL and the modified Rayleigh number RaL* pronouncedly dominate the heat transfer process. In all of the above cases, heat transfer was enhanced over that of forced convection.

Author(s):  
Dipankar Sahoo ◽  
M. A. R. Sharif

The flow and heat transfer characteristics in the cooling of a heated surface by impinging confined jets have been investigated numerically through the steady state solution of laminar two-dimensional Navier-Stokes and energy equations. The principal objective of this study is to investigate the effect of buoyancy on the associated heat transfer process. Numerical computations are done for vertically downward directed two-dimensional confined slot jets impinging on a hot isothermal surface at the bottom. The computed flow patterns and isotherms for various domain aspect ratios and for a range of jet exit Reynolds numbers (100–500) and Richardson numbers (0–10) are analyzed to understand the heat transfer phenomena. The local and average Nusselt numbers at the hot surface for various conditions are compared. It is observed that for a given domain aspect ratio and Richardson number, the average Nusselt number at the hot surface increases with increasing jet exit Reynolds number. On the other hand, for a given aspect ratio and Reynolds number the average Nusselt number does not change significantly with Richardson number indicating that the buoyancy effects are not very significant on the overall heat transfer process for the range of jet Reynolds number considered in this study.


Author(s):  
Nalla Ramu ◽  
P. S. Ghoshdastidar

Abstract This paper presents a computational study of mixed convection cooling of four in-line electronic chips by alumina-deionized (DI) water nanofluid. The chips are flush-mounted in the substrate of one wall of a vertical rectangular channel. The working fluid enters from the bottom with uniform velocity and temperature and exits from the top after becoming fully developed. The nanofluid properties are obtained from the past experimental studies. The nanofluid performance is estimated by computing the enhancement factor which is the ratio of chips averaged heat transfer coefficient in nanofluid to that in base fluid. An exhaustive parametric study is performed to evaluate the dependence of nanoparticle volume fraction, diameter of Al2O3 nanoparticles in the range of 13–87.5 nm, Reynolds number, inlet velocity, chip heat flux, and mass flowrate on enhancement in heat transfer coefficient. It is found that nanofluids with smaller particle diameters have higher enhancement factors. It is also observed that enhancement factors are higher when the nanofluid Reynolds number is kept equal to that of the base fluid as compared with the cases of equal inlet velocities and equal mass flowrates. The linear variation in mean pressure along the channel is observed and is higher for smaller nanoparticle diameters.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Basanta Kumar Rana ◽  
Bhajneet Singh ◽  
Jnana Ranjan Senapati

Abstract Numerical investigations are performed on natural and mixed convection around stationary and rotating vertical heated hollow cylinder with negligible wall thickness suspended in the air. The fluid flow and heat transfer characterization around the hollow cylinder are obtained by varying the following parameters, namely, Rayleigh number (Ra), Reynolds number (ReD), and cylindrical aspect ratio (L/D). The heat transfer quantities are estimated by varying the Rayleigh number (Ra) from 104 to 108 and aspect ratio (L/D) ranging from 1 to 20. Steady mixed convection with active rotation of hollow vertical cylinder is further studied by varying the Reynolds number (ReD) from 0 to 2100. The velocity vectors and temperature contours are shown in order to understand the fluid flow and heat transfer around the vertical hollow cylinder for both rotating and nonrotating cases. The surface average Nusselt number trends are presented for various instances of Ra, ReD, and L/D and found out that the higher rate of heat loss from the cylinder wall occurs at high Ra, low L/D (short cylinder) and high ReD.


Author(s):  
H. Mohammed ◽  
T. Yusaf

This paper aims to investigate the effect of the flow pattern on the mixed convection heat transfer. A 28 thermocouples wire were installed along a 900mm copper tube to measure the temperature distribution. Three insulation layers of fiber glass, asbestos and gypsum were used to minimize to heat lost to the surrounding. A forced convection at the entrance region of a fully developed opposing laminar air flow was investigated to evaluate the flow direction effect on the Nusselt number. The investigation covered a wide range of Reynolds number from 410 to 1600 and heat flux varied from 63W/m2 to 1260W/m2, with different angles of tube inclination of 30°, 45°, 60°, and 90°. It was found that the surface temperature variation along the tube for opposed flow higher than the assisted flow but lower than the horizontal orientation. The Reynolds number has a significant effect on Nusselt number in opposed flow while the effect of Reynolds number was found to be small in the case of assisted flow. The Nusselt number values were lower for opposed flow than the assisted flow. The temperature profiles results have revealed that the secondary flows created by natural convection have a significant effect on the heat transfer process. The obtained average Nusselt number values were correlated by dimensionless groups as Log Nu against Log Ra/Re.


2018 ◽  
Vol 240 ◽  
pp. 05012
Author(s):  
Piotr Kopeć ◽  
Beata Niezgoda-Żelasko

This paper analyses the mixed convection process in a fanless evaporator of an air heat pump. The text of the paper shows the authors’ experimental studies results of the temperature distribution and the local values of heat transfer coefficients on the outer surface of vertical tubes with longitudinal fins for the case of mixed convection and fins of a specific shape of their cross-section (prismatic, wavy fins). The experimental studies include the air velocities wa=2,3 m/s and the temperature differences between air and the refrigerant inside the heat exchanger tubes which is ΔT=24-40K. The results obtained were used for verification of CFD modeling of the heat transfer process for the discussed case of heat transfer and the geometry of the finned surface. The numerical analysis was performed for: the temperature distribution along the fin height, the tube perimeter and height, the distribution of local heat transfer coefficients on the finned tube perimeter and along its height. The simulated calculations were used to verify the method of determination of fin efficiency.


2016 ◽  
Vol 819 ◽  
pp. 111-116
Author(s):  
Nur Irmawati Om ◽  
Hussein A. Mohammed

In the present study, mixed convection in a horizontal rectangular duct using Al2O3 is numerically investigated. The effects of different Rayleigh number, Reynolds number and radiation on flow and heat transfer characteristics were studied in detail. This study covers Rayleigh number in the range of 2 106 ≤ Ra ≤ 2 107 and Reynolds number in the range of 100 ≤ Re ≤ 1100. Results reveal that the Nusselt number increases as Reynolds and Rayleigh numbers increase. It was also found that the dimensionless temperature distribution increases as Rayleigh number increases.


2000 ◽  
Vol 122 (4) ◽  
pp. 701-707 ◽  
Author(s):  
C. Gau ◽  
Y. C. Jeng ◽  
C. G. Liu

Experiments are performed to study the mixed convection flow and heat transfer in a horizontal rectangular channel heated from a side. The channel is made of two vertical parallel plates with one of the plates heated uniformly and the opposite plate well insulated. The gap between the parallel plates is small and the height to gap ratio of the channel cross section is 6.67. Both flow visualization and the heat transfer along the heated wall are measured. The Reynolds number ranges from 317 to 2000, the buoyancy parameter, Gr/Re2, from 0 to 20000 and Pr of the air flow is 0.7. Flow structure inside the channel is visualized by injecting smoke at the inlet flowing along the heated side wall. The heated buoyant flow accumulates in the upper region of the channel, which grows in size as the buoyancy parameter increases. The accumulated flow is thermally stable and has a slower motion which can reduce the heat transfer enhancement by the buoyancy force. The effect of the Reynolds number and the buoyancy parameter on the heat transfer is presented and discussed. Comparisons of the Nusselt numbers with the case of the vertical channel flow and the prediction similar to the case of a horizontal flow through a heated vertical plate are also made. The normalized Nusselt numbers are found in proportion to the buoyancy parameter, correlations of the heat transfer data in terms of this parameter have been very successful. [S0022-1481(00)01404-3]


2020 ◽  
Vol 786 (11) ◽  
pp. 30-34
Author(s):  
A.M. IBRAGIMOV ◽  
◽  
L.Yu. GNEDINA ◽  

This work is part of a series of articles under the general title The structural design of the blast furnace wall from efficient materials [1–3]. In part 1, Problem statement and calculation prerequisites, typical multilayer enclosing structures of a blast furnace are considered. The layers that make up these structures are described. The main attention is paid to the lining layer. The process of iron smelting and temperature conditions in the characteristic layers of the internal environment of the furnace is briefly described. Based on the theory of A.V. Lykov, the initial equations describing the interrelated transfer of heat and mass in a solid are analyzed in relation to the task – an adequate description of the processes for the purpose of further rational design of the multilayer enclosing structure of the blast furnace. A priori the enclosing structure is considered from a mathematical point of view as the unlimited plate. In part 2, Solving boundary value problems of heat transfer, boundary value problems of heat transfer in individual layers of a structure with different boundary conditions are considered, their solutions, which are basic when developing a mathematical model of a non-stationary heat transfer process in a multi-layer enclosing structure, are given. Part 3 presents a mathematical model of the heat transfer process in the enclosing structure and an algorithm for its implementation. The proposed mathematical model makes it possible to solve a large number of problems. Part 4 presents a number of examples of calculating the heat transfer process in a multilayer blast furnace enclosing structure. The results obtained correlate with the results obtained by other authors, this makes it possible to conclude that the new mathematical model is suitable for solving the problem of rational design of the enclosing structure, as well as to simulate situations that occur at any time interval of operation of the blast furnace enclosure.


Sign in / Sign up

Export Citation Format

Share Document