Computer Simulation of Mixed Convection of Alumina-Deionized Water Nanofluid Over Four In-Line Electronic Chips Embedded in One Wall of a Vertical Rectangular Channel

Author(s):  
Nalla Ramu ◽  
P. S. Ghoshdastidar

Abstract This paper presents a computational study of mixed convection cooling of four in-line electronic chips by alumina-deionized (DI) water nanofluid. The chips are flush-mounted in the substrate of one wall of a vertical rectangular channel. The working fluid enters from the bottom with uniform velocity and temperature and exits from the top after becoming fully developed. The nanofluid properties are obtained from the past experimental studies. The nanofluid performance is estimated by computing the enhancement factor which is the ratio of chips averaged heat transfer coefficient in nanofluid to that in base fluid. An exhaustive parametric study is performed to evaluate the dependence of nanoparticle volume fraction, diameter of Al2O3 nanoparticles in the range of 13–87.5 nm, Reynolds number, inlet velocity, chip heat flux, and mass flowrate on enhancement in heat transfer coefficient. It is found that nanofluids with smaller particle diameters have higher enhancement factors. It is also observed that enhancement factors are higher when the nanofluid Reynolds number is kept equal to that of the base fluid as compared with the cases of equal inlet velocities and equal mass flowrates. The linear variation in mean pressure along the channel is observed and is higher for smaller nanoparticle diameters.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Abid A. Memon ◽  
M. Asif Memon ◽  
Aisha M. Alqahtani ◽  
Kaleemullah Bhatti ◽  
Kamsing Nonlaopon ◽  
...  

Nonisothermal flow through the rectangular channel on a circular surface under the influence of a screen embedded at the middle of a channel at angles θ is considered. Simulations are carried out via COMSOL Multiphysics 5.4 which implements the finite element method with an emerging technique of the least square procedure of Galerkin’s method. Air as working fluid depends upon the Reynolds number with initial temperature allowed to enter from the inlet of the channel. The nonisothermal flow has been checked with the help of parameters such as Reynolds number, angle of the screen, and variations in resistance coefficient. The consequence and the pattern of the velocity field, pressure, temperature, heat transfer coefficient, and local Nusselt number are described on the front surface of the circular obstacle. The rise in the temperature and the flow rate on the surface of the obstacle has been determined against increasing Reynolds number. Results show that the velocity magnitudes are decreasing down the surface and the pressure is increasing down the surface of the obstacle. The pressure on the surface of the circular obstacle was found to be the function of the y-axis and does not show any impact due to the change of the resistance coefficient. Also, it was indicated that the temperature on the front circular surface does not depend upon the orientation of the screen and resistance factor. The heat transfer coefficient is decreasing which indicates that the conduction process is dominating over the convection process.


2019 ◽  
Vol 23 (3 Part B) ◽  
pp. 1779-1789 ◽  
Author(s):  
Syed Ahmed ◽  
Salim Kazi ◽  
Ghulamullah Khan ◽  
Mohd Zubir ◽  
Mahidzal Dahari ◽  
...  

Experimental study of nanofluid flow and heat transfer to fully developed turbulent forced convection flow in a uniformly heated tubular horizontal backward-facing step has reported in the present study. To study the forced convective heat transfer coefficient in the turbulent regime, an experimental study is performed at a different weight concentration of Al2O3 nanoparticles. The experiment had conducted for water and Al2O3 -water nanofluid for the concentration range of 0 to 0.1 wt.% and Reynolds number of 4000 to 16000. The average heat transfer coefficient ratio increases significantly as Reynolds number increasing, increased from 9.6% at Reynolds number of 4000 to 26.3% at Reynolds number of 16000 at the constant weight concentration of 0.1%. The Al2O3 water nanofluid exhibited excellent thermal performance in the tube with a backwardfacing step in comparison to distilled water. However, the pressure losses increased with the increase of the Reynolds number and/or the weight concentrations, but the enhancement rates were insignificant.


2019 ◽  
Vol 64 (2) ◽  
pp. 271-282 ◽  
Author(s):  
Abhishek Lanjewar ◽  
Bharat Bhanvase ◽  
Divya Barai ◽  
Shivani Chawhan ◽  
Shirish Sonawane

In this study, investigation of convective heat transfer enhancement with the use of CuO–Polyaniline (CuO–PANI) nanocomposite basednanofluid inside vertical helically coiled tube heat exchanger was carried out experimentally. In these experiments, the effects of different parameters such as Reynolds number and volume % of CuO–PANI nanocomposite in nanofluid on the heat transfer coefficient of base fluid have been studied. In order to study the effect of CuO–PANI nanocomposite based nanofluid on heat transfer, CuO nanoparticles loaded in PANI were synthesized in the presence of ultrasound assisted environment at different loading concentration of CuO nanoparticles (1, 3 and 5 wt.%). Then the nanofluids were prepared at different concentrations of CuO–PANI nanocomposite using water as a base fluid. The 1 wt.% CuO–PANI nanocomposite was selected for the heat transfer study for nanofluid concentration in the range of 0.05 to 0.3 volume % and Reynolds number range of was 1080 to 2160 (±5). Around 37 % enhancement in the heat transfer coefficient was observed for 0.2 volume % of 1 wt.% CuO–PANI nanocomposite in the base fluid. In addition, significant enhancement in the heat transfer coefficient was observed with an increase in the Reynolds number and percentage loading of CuO nanoparticle in Polyaniline (PANI).


1966 ◽  
Vol 88 (1) ◽  
pp. 131-136 ◽  
Author(s):  
K. M. Krall ◽  
E. M. Sparrow

Experiments were performed to determine the effect of flow separation on the heat-transfer characteristics of a turbulent pipe flow. The flow separation was induced by an orifice situated at the inlet of an electrically heated circular tube. The degree of flow separation was varied by employing orifices of various bore diameters. Water was the working fluid. The Reynolds number and the Prandtl number, respectively, ranged from 10,000 to 130,000 and from 3 to 6. The measurements show that the local heat-transfer coefficients in the separated, reattached, and redevelopment regions are several times as large as those for a fully developed flow. For instance, at the point of reattachment, the coefficients were 3 to 9 times greater than the corresponding fully developed values. In general, the increase of the heat-transfer coefficient owing to flow separation is accentuated as the Reynolds number decreases. The point of flow reattachment, which corresponds to a maximum in the distribution of the heat-transfer coefficient, was found to occur from 1.25 to 2.5 pipe dia from the onset of separation.


Author(s):  
Humberto Santos ◽  
Wei Li ◽  
David Kukulka

Abstract A CFD investigation was carried out to compare the thermal performance of the 1EHT-1 and 1EHT-2 tubes with a smooth surface tube using R410A at 311K as working fluid. These tubes have enhanced heat transfer area generated by a series of dimples/protrusions and petals distributed over its surface. All the stages of this simulation were conducted using Ansys Fluent. Initially, the physical model of the fluid domain was developed using the Design Modeler module, with an internal tube diameter of 8.32mm, and then imported to the meshing module for the griding process. To ensure accuracy in the results, the mesh average orthogonal quality was kept above 0.7, with the minimum orthogonal quality higher than 0.1. For the numerical simulation, SST k-omega model was used, with Reynolds number ranging from 16000 to 35000. The results of the heat transfer coefficient were validated based on previous experimental work. As expected, at the lowest Reynolds number tested, the heat transfer coefficient for the 1EHT-1 tube was 1097.5 W.K−1.m−2, followed by 1058 W.K−1.m−2 for the 1EHT-2 and nearly 846 W.K−1.m−2 for the smooth tube. When compared with the experimental results, a good agreement was observed, and the HTC relative error (RE) for all tubes tested was below 10%. It is possible to conclude that the CFD model used here presents as powerful tool to simulate and predict heat transfer with good accuracy, allowing optimization in heat exchangers design and operational parameters.


Author(s):  
Md Insiat Islam Rabby ◽  
◽  
Farzad Hossain ◽  
Raihan M M ◽  
Afrina Khan Piya ◽  
...  

Enhancing the heat transfer rate is highly required to remove excessive heat load from the heat transfer apparatus, which may cause massive damage to the equipment. Thus, increment of heat transfer area is one of the prime solutions for this issue. The increment of heat transfer area can be done by enhancing the pipe wall and incorporating nanoparticles with working fluids because nanoparticles showed much faster heat dispersion due to a vast surface area for heat transfer and increased thermal conductivity. Also, small molecules of nanoparticles are allowed for free movement and thus micro-convection, promoting high thermal conductivity. Higher thermal conductivity is mainly the result of a higher heat transfer rate. Therefore, in this study, a saw-type corrugated tube was considered along with the SiC-water nanofluid as the working fluid to determine the improvement of laminar convective heat transfer in terms of the Nusselt number, heat transfer coefficient, and pressure loss. The result demonstrated that by increasing the Reynolds number, the Nusselt number, heat transfer coefficient, and pressure loss were increased significantly with the enhancement of SiC-water concentration. At a Reynolds number of 1200, the maximum increment of Nusselt number in comparison to the base fluid was 9.15% when the corrugated pipe was considered. Meanwhile, the maximum improvement of heat transfer coefficient for SiC-water nanofluid in comparison to the base fluid was 37.66%.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Eric C. Okonkwo ◽  
Muhammad Abid ◽  
Tahir A. H. Ratlamwala

The parabolic trough collector (PTC) is one of the most widely deployed concentrating solar power technology in the world. This study aims at improving the operational efficiency of the commercially available LS-2 solar collector by increasing the convective heat transfer coefficient inside the receiver tube. The two main factors affecting this parameter are the properties of the working fluid and the inner geometry of the receiver tube. An investigation was carried out on six different working fluids: pressurized water, supercritical CO2, Therminol VP-1, and the addition of CuO, Fe3O4, and Al2O3 nanoparticles to Therminol VP-1. Furthermore, the influence of a converging-diverging tube with sine geometry is investigated because this geometry increases the heat transfer surface and enhances turbulent flow within the receiver. The results showed that of all the fluids investigated, the Al2O3/Oil nanofluid provides the best improvement of 0.22% to thermal efficiency, while the modified geometry accounted for a 1.13% increase in efficiency. Other parameters investigated include the exergy efficiency, heat transfer coefficient, outlet temperatures, and pressure drop. The analysis and modeling of a parabolic trough receiver are implemented in engineering equation solver (EES).


Author(s):  
Rabijit Dutta ◽  
Anupam Dewan ◽  
Balaji Srinivasan

We present a numerical investigation of hydrodynamic and heat transfer behaviors for Al2O3–water nanofluids for laminar and turbulent confined slot jets impingement heat transfer at nanoparticle volume fractions of 3% and 6%. A comparison of the nanofluid with the base fluid has been performed for the same Reynolds number and same jet inlet velocity. A single-phase fluid approach was used to model the nanofluid. Further, the thermo-physical properties of nanofluid were calculated using a recent approach. For the same value of Reynolds number, maximum increase in the average heat transfer coefficient at the impingement plate was found to be approximately 27% and 22% for laminar and turbulent slot impingements, respectively, for 6% volume fraction of nanofluid as compared to that of water. However, the pumping power curve showed a steep increase with the volume fraction with nearly five times increase in the pumping power observed for 6% volume fraction nanofluid. Further, the energy-based performance was assessed with the help of the performance evaluation criterion (PEC). PEC values indicate that nanofluids do not necessarily represent the most efficient coolants for this type of application. Moreover, at the same jet inlet velocity, a reduction in the heat transfer coefficient of 7% and 20% was observed for nanofluid as compared to base fluid for laminar and turbulent flows, respectively.


Author(s):  
Muhammad M. Rahman ◽  
Padmaja Dontaraju ◽  
Rengasamy Ponnappan

The focus of the study was the conjugate heat transfer during impingement of a confined liquid jet. Two numerical models of a heat transfer process with heat transmission through a fluid-solid interface have been developed. In the first case only the fluid region has been considered while in the second case the solid region has been modeled along with the fluid region as a conjugate problem. The inlet nozzle Reynolds number has been kept at values where laminar flow can be assumed in all cases. The solid-fluid interface temperature shows a strong dependence on several geometric, fluid flow, and heat transfer parameters. The Nusselt number increased with Reynolds number. For a given flow rate, a higher heat transfer coefficient was obtained with smaller slot width and lower impingement height. A higher heat transfer coefficient at the impingement location was seen at a smaller thickness, whereas a thicker plate provided a more uniform distribution of heat transfer coefficient. Compared to Mil-7808 and FC-77, ammonia provided much smaller solid-fluid interface temperature and higher heat transfer coefficient.


2017 ◽  
Vol 21 (5) ◽  
pp. 2227-2236 ◽  
Author(s):  
Aysha Siddiqui ◽  
Waqas Arshad ◽  
Hafiz Ali ◽  
Muzaffar Ali ◽  
Muhammad Nasir

In this investigation, deionized water was used as base fluid. Two different types of nanoparticles, namely Al2O3 and Cu were used with 0.251% and 0.11% volumetric concentrations in the base fluid, respectively. Nanofluids cooling rate for flat heat sink used to cool a microprocessor was observed and compared with the cooling rate of pure water. An equivalent microprocessor heat generator i. e. a heated Cu cylinder was used for controlled experimentation. Two surface heaters, each of 130 W power, were responsible for heat generation. The experiment was performed at the flow rates of 0.45, 0.55, 0.65, 0.75, and 0.85 liter per minute. The main focus of this research was to minimize the base temperature and to increase the overall heat transfer coefficient. The lowest base temperature achieved was 79.45 oC by Al2O3 nanofluid at Reynolds number of 751. Although, Al2O3-water nanofluid showed superior performance in overall heat transfer coefficient enhancement and thermal resistance reduction as compared to other tested fluids. However, with the increase of Reynolds number, Cu-water nanofluid showed better trends of thermal enhancement than Al2O3-water nanofluid, particularly at high Reynolds number ranges.


Sign in / Sign up

Export Citation Format

Share Document