The Wear of Thermally Stable Diamond During Rock Cutting

1994 ◽  
Vol 116 (4) ◽  
pp. 268-272 ◽  
Author(s):  
G. Cooper ◽  
Z. Liu ◽  
M. Yang

Single-cutter experiments have been performed to investigate the cutting and wear of thermally stable diamond (SYNDAX3) during rock cutting. Cutting forces increase linearly with depth of cut, but are unaffected by cutting speed. The wear of the cutter per mass of rock removed is found to decrease with increasing depth of cut. Excessive cutting speed is harmful to the cutter since both the cutter temperature and the change in cutter temperature per power input increase with cutting speed. In the cutting experiments, evidence of delayed fracturing is observed. For essentially constant cutting conditions, fractures develop in the cutter only after a significant amount of cutting is done. Damage of this type is very harmful to the cutter as cutter temperature rises and efficiency drops with increasing wear.

2016 ◽  
Vol 836-837 ◽  
pp. 168-174 ◽  
Author(s):  
Ying Fei Ge ◽  
Hai Xiang Huan ◽  
Jiu Hua Xu

High-speed milling tests were performed on vol. (5%-8%) TiCp/TC4 composite in the speed range of 50-250 m/min using PCD tools to nvestigate the cutting temperature and the cutting forces. The results showed that radial depth of cut and cutting speed were the two significant influences that affected the cutting forces based on the Taguchi prediction. Increasing radial depth of cut and feed rate will increase the cutting force while increasing cutting speed will decrease the cutting force. Cutting force increased less than 5% when the reinforcement volume fraction in the composites increased from 0% to 8%. Radial depth of cut was the only significant influence factor on the cutting temperature. Cutting temperature increased with the increasing radial depth of cut, feed rate or cutting speed. The cutting temperature for the titanium composites was 40-90 °C higher than that for the TC4 matrix. However, the cutting temperature decreased by 4% when the reinforcement's volume fraction increased from 5% to 8%.


2014 ◽  
Vol 541-542 ◽  
pp. 785-791 ◽  
Author(s):  
Joon Young Koo ◽  
Pyeong Ho Kim ◽  
Moon Ho Cho ◽  
Hyuk Kim ◽  
Jeong Kyu Oh ◽  
...  

This paper presents finite element method (FEM) and experimental analysis on high-speed milling for thin-wall machining of Al7075-T651. Changes in cutting forces, temperature, and chip morphology according to cutting conditions are analyzed using FEM. Results of machining experiments are analyzed in terms of cutting forces and surface integrity such as surface roughness and surface condition. Variables of cutting conditions are feed per tooth, spindle speed, and axial depth of cut. Cutting conditions to improve surface integrity were investigated by analysis on cutting forces and surface roughness, and machined surface condition.


Author(s):  
İsmail Kırbaş ◽  
Musa Peker ◽  
Gültekin Basmacı ◽  
Mustafa Ay

In this chapter, the impact of cutting parameters (depth of cut, cutting speed, feed, flow, rake angle, lead angle) on cutting forces in the turning process with regard to ASTM B574 (Hastelloy C-22) material has been investigated. Variance analysis has been applied in order to determine the factors affecting the cutting forces. The optimization of the parameters affecting the surface roughness has been obtained using response surface methodology (RSM) based on the Taguchi orthogonal experimental design. The accuracy of the developed models required for the estimation of the force values (Fx, Fy, Fz) is quite successful. In this study, where the R2 value has been used as the criterion/measure, accuracy values of 93.35%, 95.03%, and 95.09% have been achieved for Fx, Fy, and Fz, respectively. As a result of the ANOVA analysis, the most effective parameters for Fx at a 95% confidence interval are depth of cut, feed rate, flow, and rake angle. The most effective parameter for Fy is depth of cut, while the most effective parameters for Fz are depth of cut, feed rate, and flow, respectively.


2013 ◽  
Vol 589-590 ◽  
pp. 76-81
Author(s):  
Fu Zeng Wang ◽  
Jun Zhao ◽  
An Hai Li ◽  
Jia Bang Zhao

In this paper, high speed milling experiments on Ti6Al4V were conducted with coated carbide inserts under a wide range of cutting conditions. The effects of cutting speed, feed rate and radial depth of cut on the cutting forces, chip morphologies as well as surface roughness were investigated. The results indicated that the cutting speed 200m/min could be considered as a critical value at which both relatively low cutting forces and good surface quality can be obtained at the same time. When the cutting speed exceeds 200m/min, the cutting forces increase rapidly and the surface quality degrades. There exist obvious correlations between cutting forces and surface roughness.


2016 ◽  
Vol 23 (6) ◽  
pp. 743-750 ◽  
Author(s):  
Ergün Ekici ◽  
Mahmut Gülesin

AbstractIn this study, the effects of the particle reinforcement ratio on cutting forces and surface roughness were investigated when milling particle-reinforced metal matrix composite (MMCp) produced by hot pressing with different cutting tools. Alumix 123 alloy as the matrix material and B4C particles with an average size of 27 μm and 5%, 10% and 15% ratio as reinforcing elements were used for the manufacture of composite materials. The experiments were carried out in dry cutting conditions with four different cutting speeds, constant feed rate and depth of cut. Changes depending on the increased reinforcement ratio in cutting forces and surface roughness values were investigated; the effects of 10% B4C reinforced composite on tool wear were also examined. It was observed that cutting forces increased with the increase in cutting speed and particle ratio with carbide cutting tools, and it was seen that the cutting forces on the cutting tools decreased when cutting speed decreased and the cutting forces increased as the reinforcement ratios increased. In addition, with increasing the cutting speed, the surface roughness of the machined surfaces of composite samples increased with the carbide tools, while the cubic boron nitride (CBN) tools have the opposite effect. While it was seen that flank and crater wear occurred on the cemented carbide cutting tools, abrasive, adhesive and other wear mechanism tools in addition to the main wear mechanism, no remarkable flank and crater wear occurred on CBN cutting tools.


2004 ◽  
Vol 127 (3) ◽  
pp. 454-462 ◽  
Author(s):  
Liuqing Yang ◽  
Richard E. DeVor ◽  
Shiv G. Kapoor

This paper proposes an analytical approach to detect depth-of-cut variations based on the cutting-force shape characteristics in end milling. Cutting forces of a single-flute end mill are analyzed and classified into three types according to their shape characteristics. Cutting forces of a multiple-flute end mill are then classified by considering both the cutting types of the corresponding single-flute end mill and the degree of overlap of successive flutes in the cut. Force indices are extracted from the cutting forces and depth-of-cut variations are detected based on the changes of the force shape characteristics via the force indices in an end-milling process. The detection methodology is validated through cutting experiments.


2013 ◽  
Vol 433-435 ◽  
pp. 2101-2106
Author(s):  
Joon Hwang ◽  
Ey Hyoun Jeong ◽  
Eui Sik Chung ◽  
Steven Y. Liang

Machining performance is often limited by chatter vibration at the tool-workpiece interface. Chatter is a type of machining self-excited vibration which originates from the variation in cutting forces and the flexibility of the machine tool structure. Machining chatter is an inherently nonlinear phenomenon that is affected by many parameters such as cutting conditions, tool geometry, cutting speed, feed rate, depth of cut, overhang length of tool, clamping condition of workpiece. This study presents experimental approach for investigation of effects of various cutting tool geometry on the onset of chatter. In turning process, measured cutting force signal and triaxial accelerometer signal was used to know the characteristics of chatter vibration. The static and dynamic component of cutting forces reflect onset of chatter vibration. Proper selection of tooling is an important parameter in terms of chatter elimination in machining.


2011 ◽  
Vol 410 ◽  
pp. 291-297
Author(s):  
Sayed Mohamad Nikouei ◽  
R. Yousefi ◽  
Mohammad Ali Kouchakzadeh ◽  
M.A. Kadivar

Prediction of shear plane angle is a way for prediction of the mechanism of chip formation, machining forces and so on. In this study, Merchant and Lee-Shaffer theories are used for prediction of shear plane angles and cutting forces in machining of Al/SiCpMMC with 20% of SiC as reinforcement particles. The experimental cutting forces are compared with the calculated cutting force based on shear plane angles extracted from Merchant and Lee-Shaffer theories. The variation of these cutting forces with cutting speed, feed rate and depth of cut has been discussed. The results showed that Merchant theory may be used as a good method for prediction of chip formation in machining of Al/SiCpMMC.


2012 ◽  
Vol 523-524 ◽  
pp. 109-112
Author(s):  
Fukuhito Nagata ◽  
Koji Akashi ◽  
Daisaku Ishibashi

The BTA tool is a tool for deep-hole drilling. The deep-hole which be machined by this tool has the excellent straightness and roughness. However, it's use a lot of cutting oil. Therefore, it will lead to environmental destruction. Thereupon, in this study, it is applied the near-dry system to the deep-hole drilling with BTA tool. In the previously, it was designed the experimental device with a double tube system, and the cutting experiments was carried out. In this system, the chip is discharged through inside of the inner tube. Frequently, the chip is cannot be divided by the adhesion on the cutting edge during drilling. Thereby, the chip was jammed into the inside of tool’s tube. It is tried experiments of various cutting conditions, cutting speed and feed rate, by tools with different geometry, height and width, of the chip-breaker. And, it is observed the discharge condition of chips, the chip’s shape and the situation of adhesion. As a result, it can be found the optimum cutting condition and tool’s geometry for a continuous chip’s discharge while the deep-hole is drilling by a BTA tool in near-dry system.


1996 ◽  
Vol 118 (3) ◽  
pp. 419-425 ◽  
Author(s):  
G. Caprino ◽  
L. Nele

The results of orthogonal cutting tests carried out on unidirectional glass fiber reinforced plastic composites, using HSS tools, are presented and discussed. During the tests, performed on a milling machine at very low cutting speed to avoid thermal effects, the cutting speed was held constant and parallel to the fibre direction. Three parameters, namely the tool rake angle α, the tool relief angle γ, and the depth of cut t, were varied. According to the experimental results, the horizontal force per unit width, Fhu, undergoes a dramatic decrease, never verified for metals, with increasing α. Besides, Fhu is only negligibly affected by the relief angle, and linearly increases with t. Similarly to metals, an effect of the depth of cut on the specific energy (size effect) is found also for composites. However, the presented results indicate that the size effect can be analytically modeled in a simple way in the case of composites. The vertical force per unit width, Fvu, exhibits a marked reduction when the relief angle is increased. Fvu, is also very sensitive to the rake angle: the lower α the higher is Fvu. It is shown that this behavior probably reflects a strong influence of the rake angle on the forces developing at the flank. A linear dependence of the vertical force on the depth of cut is also demonstrated. Finally, the experimental data are utilized to obtain empirical formulae, allowing an approximate evaluation of cutting forces.


Sign in / Sign up

Export Citation Format

Share Document