Performance Evaluation of Selected Combustion Gas Turbine Cogeneration Systems Based on First and Second-Law Analysis

1990 ◽  
Vol 112 (1) ◽  
pp. 117-121 ◽  
Author(s):  
F. F. Huang

The thermodynamic performance of selected combustion gas turbine cogeneration systems has been studied based on first-law as well as second-law analysis. The effects of the pinch point used in the design of the heat recovery steam generator, and pressure of process steam on fuel-utilization efficiency (first-law efficiency), power-to-heat ratio, and second-law efficiency, are examined. Results for three systems using state-of-the-art industrial gas turbines show clearly that performance evaluation based on first-law efficiency alone is inadequate. Decision makers should find the methodology contained in this paper useful in the comparison and selection of cogeneration systems.

1995 ◽  
Vol 117 (2) ◽  
pp. 245-250 ◽  
Author(s):  
K. Nakakado ◽  
T. Machida ◽  
H. Miyata ◽  
T. Hisamatsu ◽  
N. Mori ◽  
...  

Employing ceramic materials for the critical components of industrial gas turbines is anticipated to improve the thermal efficiency of power plants. We developed a first-stage stator vane for a 1300°C class, 20-MW industrial gas turbine. This stator vane has a hybrid ceramic/metal structure, to increase the strength reliability of brittle ceramic parts, and to reduce the amount of cooling air needed for metal parts as well. The strength design results of a ceramic main part are described. Strength reliability evaluation results are also provided based on a cascade test using combustion gas under actual gas turbine running conditions.


Author(s):  
Steve Ingistov

This paper describes efforts to upgrade the mechanical integrity of axial compressor stator blades. The blades under discussion are part of an axial compressor of a heavy duty industrial Combustion Gas Turbine (CGT) made by GE, frame No. 7, model EA. The axial compressor stator blades, in the later stages of compression, are kept in required position by spacers or shims shaped to match the root profile of the blades. These spacers/shims may be as thick as 1/4 of an inch and as thin as 1/32 of an inch. These spacers/shims tend to wiggle out of the slots and eventually liberate themselves from the stator. This paper introduces a proposed solution to minimize liberation of the spacer/shims by introduction of flexible spacers/shims. This paper also describes field experience with loss of the stator blades in the last stage of compression, due to aerodynamic disturbances.


2021 ◽  
Author(s):  
M. A. Ancona ◽  
M. Bianchi ◽  
L. Branchini ◽  
A. De Pascale ◽  
F. Melino ◽  
...  

Abstract Gas turbines are often employed in the industrial field, especially for remote generation, typically required by oil and gas production and transport facilities. The huge amount of discharged heat could be profitably recovered in bottoming cycles, producing electric power to help satisfying the onerous on-site energy demand. The present work aims at systematically evaluating thermodynamic performance of ORC and supercritical CO2 energy systems as bottomer cycles of different small/medium size industrial gas turbine models, with different power rating. The Thermoflex software, providing the GT PRO gas turbine library, has been used to model the machines performance. ORC and CO2 systems specifics have been chosen in line with industrial products, experience and technological limits. In the case of pure electric production, the results highlight that the ORC configuration shows the highest plant net electric efficiency. The average increment in the overall net electric efficiency is promising for both the configurations (7 and 11 percentage points, respectively if considering supercritical CO2 or ORC as bottoming solution). Concerning the cogenerative performance, the CO2 system exhibits at the same time higher electric efficiency and thermal efficiency, if compared to ORC system, being equal the installed topper gas turbine model. The ORC scarce performance is due to the high condensing pressure, imposed by the temperature required by the thermal user. CO2 configuration presents instead very good cogenerative performance with thermal efficiency comprehended between 35 % and 46 % and the PES value range between 10 % and 22 %. Finally, analyzing the relationship between capital cost and components size, it is estimated that the ORC configuration could introduce an economical saving with respect to the CO2 configuration.


Author(s):  
Bernhard Ćosić ◽  
Frank Reiss ◽  
Marc Blümer ◽  
Christian Frekers ◽  
Franklin Genin ◽  
...  

Abstract Industrial gas turbines like the MGT6000 are often operated as power supply or as mechanical drives. In these applications, liquid fuels like 'Diesel Fuel No.2' can be used either as main fuel or as backup fuel if natural gas is not reliably available. The MAN Gas Turbines (MGT) operate with the Advanced Can Combustion (ACC) system, which is capable of ultra-low NOx emissions for gaseous fuels. This system has been further developed to provide dry dual fuel capability. In the present paper, we describe the design and detailed experimental validation process of the liquid fuel injection, and its integration into the gas turbine package. A central lance with an integrated two-stage nozzle is employed as a liquid pilot stage, enabling ignition and start-up of the engine on liquid fuel only. The pilot stage is continuously operated, whereas the bulk of the liquid fuel is injected through the premixed combustor stage. The premixed stage comprises a set of four decentralized nozzles based on fluidic oscillator atomizers, wherein atomization of the liquid fuel is achieved through self-induced oscillations. We present results illustrating the spray, hydrodynamic, and emission performance of the injectors. Extensive testing of the burner at atmospheric and full load high-pressure conditions has been performed, before verification within full engine tests. We show the design of the fuel supply and distribution system. Finally, we discuss the integration of the dual fuel system into the standard gas turbine package of the MGT6000.


Author(s):  
Philip H. Snyder ◽  
M. Razi Nalim

Renewed interest in pressure gain combustion applied as a replacement of conventional combustors within gas turbine engines creates the potential for greatly increased capability engines in the marine power market segment. A limited analysis has been conducted to estimate the degree of improvements possible in engine thermal efficiency and specific work for a type of wave rotor device utilizing these principles. The analysis considers a realistic level of component losses. The features of this innovative technology are compared with those of more common incremental improvement types of technology for the purpose of assessing potentials for initial market entry within the marine gas turbine market. Both recuperation and non-recuperation cycles are analyzed. Specific fuel consumption improvements in excess of 35% over those of a Brayton cycle are indicated. The technology exhibits the greatest percentage potential in improving efficiency for engines utilizing relatively low or moderate mechanical compression pressure ratios. Specific work increases are indicated to be of an equally dramatic magnitude. The advantages of the pressure gain combustion approach are reviewed as well as its technology development status.


Author(s):  
Marcin Bielecki ◽  
Salvatore Costagliola ◽  
Piotr Gebalski

The paper deliberates vibration limits for non-rotating parts in application to industrial gas turbines. As a rule such limits follow ISO 10816-4 or API616, although in field operation it is not well known relationship between these limits and failure modes. In many situations, the reliability function is not well-defined, and more comprehensive methods of determining the harmful effects of support vibrations are desirable. In the first part, the undertaken approach and the results are illustrated based on the field and theoretical experience of the authors about the failure modes related to alarm level of vibrations. Here several failure modes and diagnostics observations are illustrated with the examples of real-life data. In the second part, a statistical approach based on correlation of support vs. shaft vibrations (velocity / displacement) is demonstrated in order to assess the risk of the bearing rub. The test data for few gas turbine models produced by General Electric Oil & Gas are statistically evaluated and allow to draw an experimentally based transfer function between vibrations recorded by non-contact and seismic probes. Then the vibration limit with objectives like bearing rub is scrutinized with aid of probabilistic tools. In the third part, the attention is given to a few examples of the support vibrations — among other gas turbine with rotors supported on flexible pedestals and baseplate. Here there is determined a transfer coefficient between baseplate and bearing vibrations for specific foundation configurations. Based on the test data screening as well as analysis and case studies thereof, the conclusions about more specific vibration limits in relation to the failure modes are drawn.


1978 ◽  
Vol 100 (4) ◽  
pp. 704-710
Author(s):  
Ch. Just ◽  
C. J. Franklin

The need for a thorough and systematic standard evaluation program for new materials for modern industrial gas turbines is shown by several examples and facts. A complete list of the data required by the designer of an industrial gas turbine is given, together with comments to some of the more important properties. A six-phase evaluation program is described which minimizes evaluation time, cost, and the risk of introducing a new material.


Author(s):  
Uyioghosa Igie ◽  
Marco Abbondanza ◽  
Artur Szymański ◽  
Theoklis Nikolaidis

Industrial gas turbines are now required to operate more flexibly as a result of incentives and priorities given to renewable forms of energy. This study considers the extraction of compressed air from the gas turbine; it is implemented to store heat energy at periods of a surplus power supply and the reinjection at peak demand. Using an in-house engine performance simulation code, extractions and injections are investigated for a range of flows and for varied rear stage bleeding locations. Inter-stage bleeding is seen to unload the stage of extraction towards choke, while loading the subsequent stages, pushing them towards stall. Extracting after the last stage is shown to be appropriate for a wider range of flows: up to 15% of the compressor inlet flow. Injecting in this location at high flows pushes the closest stage towards stall. The same effect is observed in all the stages but to a lesser magnitude. Up to 17.5% injection seems allowable before compressor stalls; however, a more conservative estimate is expected with higher fidelity models. The study also shows an increase in performance with a rise in flow injection. Varying the design stage pressure ratio distribution brought about an improvement in the stall margin utilized, only for high extraction.


2020 ◽  
Vol 51 (9) ◽  
pp. 4902-4921 ◽  
Author(s):  
Sabin Sulzer ◽  
Magnus Hasselqvist ◽  
Hideyuki Murakami ◽  
Paul Bagot ◽  
Michael Moody ◽  
...  

Abstract Industrial gas turbines (IGT) require novel single-crystal superalloys with demonstrably superior corrosion resistance to those used for aerospace applications and thus higher Cr contents. Multi-scale modeling approaches are aiding in the design of new alloy grades; however, the CALPHAD databases on which these rely remain unproven in this composition regime. A set of trial nickel-based superalloys for IGT blades is investigated, with carefully designed chemistries which isolate the influence of individual additions. Results from an extensive experimental characterization campaign are compared with CALPHAD predictions. Insights gained from this study are used to derive guidelines for optimized gas turbine alloy design and to gauge the reliability of the CALPHAD databases.


Sign in / Sign up

Export Citation Format

Share Document