The Effect of Injection Timing, Enhanced Aftercooling, and Low-Sulfur, Low-Aromatic Diesel Fuel on Locomotive Exhaust Emissions

1992 ◽  
Vol 114 (3) ◽  
pp. 488-495 ◽  
Author(s):  
V. O. Markworth ◽  
S. G. Fritz ◽  
G. R. Cataldi

An experimental study was performed to demonstrate the fuel economy and exhaust emissions implications of retarding fuel injection timing, enhancing charge air aftercooling, and using low-sulfur, low-aromatic diesel fuel for locomotive engines. Steady-state gaseous and particulate emissions data are presented from two 12-cylinder diesel locomotive engines. The two laboratory engines, an EMD 645E3B and a GE 7FDL, are each rated at 1860 kW (2500 hp) and represent the majority of the locomotive fleet in North America. Each engine was tested for total hydrocarbons (HC), carbon monoxide (CO), oxides of nitrogen (NOx), and particulate. Emissions were measured at three steady-state operating conditions: rated speed and load, idle, and an intermediate speed and load. Test results on the EMD engine indicate that a 4 deg injection timing retard, along with a low-sulfur, low-aromatic fuel and enhanced aftercooling, was effective in reducing NOx from 10.5 g/hp-h to 7.2 g/hp-h; however, particulates increased from 0.15 g/hp-h to 0.19 g/hp-h, and fuel efficiency was 4.3 percent worse. Similar observations were made with the GE engine. This paper gives details on the test engines, the measurement procedures, and the emissions results.

1991 ◽  
Vol 113 (3) ◽  
pp. 370-376 ◽  
Author(s):  
S. G. Fritz ◽  
G. R. Cataldi

Steady-state gaseous and particulate emissions data are presented from two 12-cylinder diesel locomotive engines. The two laboratory engines, a EMD 645E3B and a GE 7FDL, are rated at 1860 kW (2500 hp) and are representative of the majority of the locomotive fleet in North America. Each engine was tested for total hydrocarbons (HC), carbon monoxide (CO), oxides of nitrogen (NOx), and particulate. Emissions were measured at all steady-state operating conditions that make up the eight discrete locomotive throttle notch positions, plus idle, low idle, and dynamic brake. Emissions are reported for each engine with two different diesel fuels: a baseline diesel fuel with a sulfur content of 0.33 weight percent, and a commercially available low-sulfur diesel fuel with a sulfur content of 0.01 weight percent.


Author(s):  
Steven G. Fritz ◽  
John C. Hedrick ◽  
Brian E. Smith

This paper documents results from an experimental study performed to determine the effects of several ultra-low sulfur diesel (ULSD) fuels (< 15 ppm S) on exhaust emissions from a 1,500 kW EMD 16-645-E, roots-blown, diesel locomotive engine. U.S. EPA-regulated emission levels of hydrocarbons (HC), carbon monoxide (CO), oxides of nitrogen (NOx), and particulate (PM) were measured using U.S. EPA locomotive test procedures while operating on four ULSD fuels, plus a fifth baseline fuel which was a commercially-available Federal on-highway diesel fuel (< 500 ppm). The four ULSD fuels were (1) a ULSD California motor vehicle diesel fuel (CARB fuel) with an aromatic content of less than 10 percent, (2) a ULSD “equivalent” California motor vehicle diesel fuel with an aromatic content of 24 percent, (3 and 4) two custom blended “2006 ULSD Federal” diesel fuels with relatively low Cetane Numbers and higher aromatic levels. This paper reports the changes observed in the regulated exhaust emission levels between the ULSD CARB diesel fuels and the ULSD Federal diesel fuels.


1994 ◽  
Vol 116 (4) ◽  
pp. 774-783 ◽  
Author(s):  
S. G. Fritz

To enhance the effectiveness of intercity passenger rail service in mitigating exhaust emissions in California, the California Department to Transportation (Caltrans) included limits on exhaust emissions in its intercity locomotive procurement specifications. Because there were no available exhaust emission test data on which emission reduction goals could be based, Caltrans funded a test program to acquire gaseous and particulate exhaust emissions data, along with smoke opacity data, from two state-of-the-art intercity passenger locomotives. The two passenger locomotives (an EMD F59PH and a GE DASH8-32BWH) were tested at the Association of American Railroads Chicago Technical Center. The EMD locomotive was eqiupped with a separate Detroit Diesel, Corporation (DDC) 8V-149 diesel engine used to provide 480 V AC power for the trailing passenger cars. This DDC engine was also emission tested. These data were used to quantify baseline exhaust emission levels as a challenge to locomotive manufacturers to offer new locomotives with reduced emissions. Data from the two locomotive engines were recorded at standard fuel injection timing and with the fuel injection timing retarded 4 deg in an effort to reduce NOx emissions. Results of this emissions testing were incorporated into the Caltrans locomotive procurement process by including emission performance requirements in the Caltrans intercity passenger locomotive specification, and therefore in the procurement decision. This paper contains steady-state exhaust emission test results for hydrocarbons (HC), carbon monoxide (CO), oxides of nitrogen (NOx), and particulate matter (PM) from the two locomotives. Computed sulfur dixoide (SO2) emissions are also given, and are based on diesel fuel consumption and sulfur content. Exhaust smoke opacity is also reported.


Author(s):  
E. Movahednejad ◽  
F. Ommi ◽  
M. Hosseinalipour ◽  
O. Samimi

For spark ignition engines, the fuel-air mixture preparation process is known to have a significant influence on engine performance and exhaust emissions. In this paper, an experimental study is made to characterize the spray characteristics of an injector with multi-disc nozzle used in the engine. The distributions of the droplet size and velocity and volume flux were characterized by a PDA system. Also a model of a 4 cylinder multi-point fuel injection engine was prepared using a fluid dynamics code. By this code one-dimensional, unsteady, multiphase flow in the intake port has been modeled to study the mixture formation process in the intake port. Also, one-dimensional air flow and wall fuel film flow and a two-dimensional fuel droplet flow have been modeled, including the effects of in-cylinder mixture back flows into the port. The accuracy of model was verified using experimental results of the engine testing showing good agreement between the model and the real engine. As a result, predictions are obtained that provide a detailed picture of the air-fuel mixture properties along the intake port. A comparison was made on engine performance and exhaust emission in different fuel injection timing for 2600 rpm and different loads. According to the present investigation, optimum injection timing for different engine operating conditions was found.


2017 ◽  
Vol 168 (1) ◽  
pp. 73-76
Author(s):  
Marcin WOJS ◽  
Piotr ORLIŃSKI ◽  
Jakub LASOCKI

The present study describes selected issues associated with the emission level in toxic exhaust gases and fuel injection timing. The study was focused on the following types of fuels: Diesel oil (the base fuel) and the other fuels were the mixture of fatty acid methyl ester with Camelina (L10 – diesel fuel with 10% V/V FAME of Camelina and L20 – diesel fuel with 10% V/V FAME of Camelina) was used. Fuel injection advanced angle was set for three different values – the factory setting – 12° before TDC, later injection – 7° and earlier injection – 17°. The most important conclusion is that in most measurement points registered in the same engine operating conditions, the concentration of fuel NOx in L10 and L20 increased but PM emissions decreased which is caused by active oxygen located in the internal structure of the fuel. This fact contributes to the rise in temperature during the combustion process. At the same time factory settings of the angle makes NOx emissions lower and close to reference fuel.


Author(s):  
Jai Gopal Gupta ◽  
Avinash Kumar Agarwal ◽  
Suresh K. Aggarwal

The use of biodiesel substantially reduces particulate matter (PM), hydrocarbon (HC) and carbon monoxide (CO) emissions, slightly reduces power output; increases fuel consumption and marginally increases oxides of nitrogen (NOx) emission in an unmodified common rail direct injection (CRDI) diesel engine. Lower blends of biodiesel demonstrated lower emissions, while easing pressure on scarce petroleum resources, without significantly sacrificing engine power output and fuel economy. However due to adverse health effects of smaller size particulate matter (PM) emitted by internal combustion (IC) engines, most recent emission legislations restrict the PM mass emissions in addition to total particle numbers emitted. It is an overwhelming argument that usage of biodiesel leads to reduction in PM mass emissions. In this paper, experimental results of PM emissions using Karanja biodiesel blends (KB20 and KB40) in a modern CRDI transportation engine (maximum fuel injection pressure of 1600 bar) have been reported. This study also explores comparative effect of varying engine speed and load on PM emissions for biodiesel blends vis-à-vis baseline mineral diesel. Particulate size-number distribution, particle size-surface area distribution and total particulate number concentrations were experimentally determined under varying engine operating conditions and compared with baseline mineral diesel. KB20 showed highest particulate number concentration upto 80% rated engine loads, however at rated load, KB40 emitted highest number of particulates.


Author(s):  
Shuonan Xu ◽  
David Anderson ◽  
Mark Hoffman ◽  
Robert Prucka ◽  
Zoran Filipi

Energy security concerns and an abundant supply of natural gas in the USA provide the impetus for engine designers to consider alternative gaseous fuels in the existing engines. The dual-fuel natural-gas diesel engine concept is attractive because of the minimal design changes, the ability to preserve a high compression ratio of the baseline diesel, and the lack of range anxiety. However, the increased complexity of a dual-fuel engine poses challenges, including the knock limit at a high load, the combustion instability at a low load, and the transient response of an engine with directly injected diesel fuel and port fuel injection of compressed natural gas upstream of the intake manifold. Predictive simulations of the complete engine system are an invaluable tool for investigations of these conditions and development of dual-fuel control strategies. This paper presents the development of a phenomenological combustion model of a heavy-duty dual-fuel engine, aided by insights from experimental data. Heat release analysis is carried out first, using the cylinder pressure data acquired with both diesel-only and dual-fuel (diesel and natural gas) combustion over a wide operating range. A diesel injection timing correlation based on the injector solenoid valve pulse widths is developed, enabling the diesel fuel start of injection to be detected without extra sensors on the fuel injection cam. The experimental heat release trends are obtained with a hybrid triple-Wiebe function for both diesel-only operation and dual-fuel operation. The ignition delay period of dual-fuel operation is examined and estimated with a predictive correlation using the concept of a pseudo-diesel equivalence ratio. A four-stage combustion mechanism is discussed, and it is shown that a triple-Wiebe function has the ability to represent all stages of dual-fuel combustion. This creates a critical building block for modeling a heavy-duty dual-fuel turbocharged engine system.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Datta Bharadwaz Yellapragada ◽  
Govinda Rao Budda ◽  
Kavya Vadavelli

Purpose The present work aims at improving the performance of the engine using optimized fuel injection strategies and operating parameters for plastic oil ethanol blends. To optimize and predict the engine injection and operational parameters, response surface methodology (RSM) and artificial neural networks (ANN) are used respectively. Design/methodology/approach The engine operating parameters such as load, compression ratio, injection timing and the injection pressure are taken as inputs whereas brake thermal efficiency (BTHE), brake-specific fuel consumption (BSFC), carbon monoxide (CO), hydrocarbons (HC), oxides of nitrogen (NOx) and smoke emissions are treated as outputs. The experiments are designed according to the design of experiments, and optimization is carried out to find the optimum operational and injection parameters for plastic oil ethanol blends in the engine. Findings Optimum operational parameters of the engine when fuelled with plastic oil and ethanol blends are obtained at 8 kg of load, injection pressure of 257 bar, injection timing of 17° before top dead center and blend of 15%. The engine performance parameters obtained at optimum engine running conditions are BTHE 32.5%, BSFC 0.24 kg/kW.h, CO 0.057%, HC 10 ppm, NOx 324.13 ppm and smoke 79.1%. The values predicted from ANN are found to be more close to experimental values when compared with the values of RSM. Originality/value In the present work, a comparative analysis is carried out on the prediction capabilities of ANN and RSM for variable compression ratio engine fuelled with ethanol blends of plastic oil. The error of prediction for ANN is less than 5% for all the responses such as BTHE, BSFC, CO and NOx except for HC emission which is 12.8%.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3837 ◽  
Author(s):  
Sam Ki Yoon ◽  
Jun Cong Ge ◽  
Nag Jung Choi

This experiment investigates the combustion and emissions characteristics of a common rail direct injection (CRDI) diesel engine using various blends of pure diesel fuel and palm biodiesel. Fuel injection pressures of 45 and 65 MPa were investigated under engine loads of 50 and 100 Nm. The fuels studied herein were pure diesel fuel 100 vol.% with 0 vol.% of palm biodiesel (PBD0), pure diesel fuel 80 vol.% blended with 20 vol.% of palm biodiesel (PBD20), and pure diesel fuel 50 vol.% blended with 50 vol.% of palm biodiesel (PBD50). As the fuel injection pressure increased from 45 to 65 MPa under all engine loads, the combustion pressure and heat release rate also increased. The indicated mean effective pressure (IMEP) increased with an increase of the fuel injection pressure. In addition, for 50 Nm of the engine load, an increase to the fuel injection pressure resulted in a reduction of the brake specific fuel consumption (BSFC) by an average of 2.43%. In comparison, for an engine load of 100 Nm, an increase in the fuel injection pressure decreased BSFC by an average of 0.8%. Hydrocarbon (HC) and particulate matter (PM) decreased as fuel pressure increased, independent of the engine load. Increasing fuel injection pressure for 50 Nm engine load using PBD0, PBD20 and PBD50 decreased carbon monoxide (CO) emissions. When the fuel injection pressure was increased from 45 MPa to 65 MPa, oxides of nitrogen (NOx) emissions were increased for both engine loads. For a given fuel injection pressure, NOx emissions increased slightly as the biodiesel content in the fuel blend increased.


Sign in / Sign up

Export Citation Format

Share Document