Experimental and Analytical Investigation of Hybrid Squeeze Film Dampers

1993 ◽  
Vol 115 (2) ◽  
pp. 353-359 ◽  
Author(s):  
A. El-Shafei

A new concept for actively controlling high-speed rotating machinery is investigated both analyically and experimentally. The controlling mechanism consists of a hybrid squeeze film damper (patent pending) that can be adaptively controlled to change its characteristics according to the instructions of a controller. In an extreme case the hybrid damper can act as a long damper, which is shown to be effective in reducing the amplitude of vibration of rotating machinery. In the other extreme the hybrid damper acts as a short damper, which is shown to be effective in reducing the force transmitted to the support. In the long damper configuration the oil flow is circumferential, while in the short damper configuration the oil flow is predominantly axial. The hybrid damper is designed to operate in either the short or the long damper configuration by controlling the positions of two movable sealing rings. The hybrid damper was tested on a Bently Nevada Rotor Kit and it is shown experimentally that the long damper configuration is extremely efficient at controlling the amplitude of vibration and the short damper configuration reduces the force transmitted to the support.

Author(s):  
A. El-Shafei

A new concept for actively controlling high speed rotating machinery is investigated both analytically and experimentally. The controlling mechanism consists of a hybrid squeeze film damper (patent pending) that can be adaptively controlled to change its characteristics according to the instructions of a controller. In an extreme case the hybrid damper can act as a long damper which is shown to be effective in reducing the amplitude of vibration of rotating machinery. In the other extreme the hybrid damper acts as a short damper which is shown to be effective in reducing the force transmitted to the support. In the long damper configuration the oil flow is circumferential, while in the short damper configuration the oil flow is predominantly axial. The hybrid damper is designed to operate in either of the short or the long damper configurations by controlling the positions of two movable sealing rings. The hybrid damper was tested on a Bently Nevada Rotor Kit and it is shown experimentally that the long damper configuration is extremely efficient at controlling the amplitude of vibration and the short damper configuration reduces the force transmitted to the support.


Author(s):  
L. Moraru ◽  
T. G. Keith ◽  
F. Dimofte ◽  
S. Cioc ◽  
N. Ene ◽  
...  

Squeeze film dampers (SFD) are devices utilized to control the shafts of high-speed rotating machinery. A dual squeeze film damper (DSFD) consists of two squeeze film bearings that are separated by a sleeve, which is released when the rotor experiences abnormal operating conditions. In this part of our study of DSFD we analyze the case when both the inner and the outer oil films are active. We present computed and measured unbalance responses of a shaft supported in DSFD. The oil forces which are utilized in the calculation of the unbalance response are obtained from numerical solutions of the Reynolds equation. A finite-difference algorithm is utilized for solving the pressure equation within the calculation of the dynamic response of the shaft.


Author(s):  
L. Moraru ◽  
F. Dimofte ◽  
S. Cioc ◽  
T. G. Keith ◽  
D. P. Fleming

Squeeze film dampers (SFD) are devices utilized to control vibrations of the shafts of high-speed rotating machinery. A dual squeeze film damper (DSFD) consists of two squeeze film bearings that are separated by a sleeve, which is released when the rotor experiences abnormal operating conditions. In this part of our study of DSFD we analyze the case when both the inner and the outer oil films are active and the separating sleeve is supported by a squirrel cage. Numerical results are compared with the experimental data.


Author(s):  
Zhu Changsheng

Abstract Based on lots of data from an experiment of a high-speed rotor supported on squeeze film dampers, this paper analyses that how the bistable jump affects the reliability of squeeze film dampers, if the rotor system has to frequently pass through the bistable oparation speed range. It is shown that the change of the rotor vibration amplitudes caused by times of passed through bistable operation speed range is more significant than that caused by steady operating time. The users must pay much attention to the bistable jump phenomenon in the successful application of squeeze film dampers.


Author(s):  
Praneetha Boppa ◽  
Aarthi Sekaran ◽  
Gerald Morrison

Squeeze film dampers (SFDs) are used in the high speed turbo machinery industry and aerospace industry as a means to reduce vibration amplitude, to provide damping, to improve dynamic stability of the rotor bearing system and to isolate structural components. Past studies have not included effects of variation of the stator geometries in a squeeze film damper. A central groove added to the squeeze film land is hypothesized to provide a uniform flow source which theory predicts will result in forces less than one fourth of that seen in SFDs without a central groove. In the present study, 3D numerical simulations of SFDs with different size central grooves on the squeeze film land are performed to predict the variation of the dynamic pressure profiles. The numerical model and method have been validated via comparison to experimental data for a SFD without a central groove. When a central groove is added to the squeeze film land, the pressures generated are reduced to half of that generated when run without a central groove on the land. The amount of reduction in pressure values depends on the volume of the groove, not on the aspect ratio of the groove. Addition of a central groove reduces the pressures, rigidity developed in squeeze film land, and forces generated by squeeze film damper.


Author(s):  
Bugra Ertas ◽  
Adolfo Delgado

The following paper presents a new gas bearing concept that targets machine applications in the megawatt (MW) power range. The concept involves combining a compliant hybrid gas bearing (CHGB) with 2 hermetically sealed squeeze film damper (HSFD) modules installed in the bearing support damper cavities. The main aim of the research was to demonstrate gas bearing-support damping levels using HSFD that rival conventional open-flow squeeze film dampers (SFD) in industry. A detailed description of the bearing design and functionality is discussed while anchoring the concept through a brief recap of past gas bearing concepts. Proof-of-concept experimental testing is presented involving parameter identification of the bearing support force coefficients along with a demonstration of speed and load capability using recessed hydrostatic pads. Lastly, a landing test was performed on the bearing at high speed and load with porous carbon pads to show capability of sustaining rubs at high speeds. The component testing revealed robust viscous damping in the bearing support, which was shown to be comparable to existing state of the art SFD concepts. The damping and stiffness of the system portrayed moderate frequency dependency, which was simulated using a 2D Reynolds based incompressible fluid flow model. Lastly, rotating tests demonstrated the ability of the gas bearing concept to sustain journal excursions and loads indicative of critical speed transitions experienced in large turbomachinery.


1978 ◽  
Vol 100 (1) ◽  
pp. 139-146 ◽  
Author(s):  
R. A. Marmol ◽  
J. M. Vance

A mathematical model for squeeze film dampers is developed, and the solution results are compared with data from four different test rigs. A special feature of the analysis is the treatment of several different types of end seals and inlets, with inlet feedback included. A finite difference method is used to solve the Reynolds equation, with a banded matrix inversion routine. The test data are taken from a new high-speed free-rotor rig, and from three previously tested controlled-orbit rigs.


2002 ◽  
Vol 124 (3) ◽  
pp. 598-607 ◽  
Author(s):  
A. El-Shafei

The hybrid squeeze film damper (HSFD) has proven itself to be an effective controlling device of vibration in rotating machinery. The critical stage in the development of the HSFD as an active vibration suppressant, is the development of the control algorithms for active control of rotor vibrations. This paper summarizes, evaluates, and compares the control algorithms for HSFD-supported rotors. Quantitative as well as qualitative measures of the effectiveness of the control algorithms are presented. The study includes the PID-type controllers, LQR, gain scheduling, adaptive and bang-bang controllers. The adaptive, gain scheduling, and nonlinear proportional controllers have proved to be quite effective in the active control of HSFD supported rotors, with impressive results.


2019 ◽  
Vol 72 (5) ◽  
pp. 611-619 ◽  
Author(s):  
Mohamed Benadda ◽  
Ahmed Bouzidane ◽  
Marc Thomas ◽  
Raynald Guilbault

Purpose This paper aims to propose a new hydrostatic squeeze film damper compensated with electrorheological valve restrictors to control the nonlinear dynamic behavior of a rigid rotor caused by high unbalance eccentricity ratio. To investigate the effect of electrorheological valve restrictors on the dynamic behavior of a rigid rotor, a nonlinear model is developed and presented. Design/methodology/approach The nonlinear results are compared with those obtained from a linear approach. The results show good agreement between the linear and nonlinear methods when the unbalanced force is small. The effects of unbalance eccentricity ratio and electric field on the vibration response and the bearing transmitted force are investigated using the nonlinear models. Findings The results of simulation performed that the harmonics generated by high unbalance eccentricities can be reduced by using hydrostatic squeeze film damper compensated with electrorheological valve restrictors. Originality/value The numerical results demonstrate that this type of smart hydrostatic squeeze film damper provides to hydrostatic designers a new bearing configuration suitable to control rotor vibrations and bearing transmitted forces, especially for high speed.


Author(s):  
L. Moraru ◽  
T. G. Keith ◽  
F. Dimofte ◽  
S. Cioc ◽  
D. P. Fleming

Squeeze film dampers (SFD) are devices utilized to control vibrations of the shafts of high-speed rotating machinery. A dual squeeze film damper (DSFD) consists of two squeeze film bearings that are separated by a sleeve, which is released when the rotor experiences abnormal operating conditions. In this part of our study of DSFD we analyze the case when both the inner and the outer oil films are active. Previous studies utilized closed form analytical expressions to describe the forces within the lubricant. In this paper the oil forces are modeled using pressure distributions obtained from numerical solutions of the Reynolds equation. Numerical results are compared with the experimental data.


Sign in / Sign up

Export Citation Format

Share Document