A Study of a Dual Clearance Squeeze Film Damper

Author(s):  
L. Moraru ◽  
T. G. Keith ◽  
F. Dimofte ◽  
S. Cioc ◽  
D. P. Fleming

Squeeze film dampers (SFD) are devices utilized to control vibrations of the shafts of high-speed rotating machinery. A dual squeeze film damper (DSFD) consists of two squeeze film bearings that are separated by a sleeve, which is released when the rotor experiences abnormal operating conditions. In this part of our study of DSFD we analyze the case when both the inner and the outer oil films are active. Previous studies utilized closed form analytical expressions to describe the forces within the lubricant. In this paper the oil forces are modeled using pressure distributions obtained from numerical solutions of the Reynolds equation. Numerical results are compared with the experimental data.

Author(s):  
L. Moraru ◽  
T. G. Keith ◽  
F. Dimofte ◽  
S. Cioc ◽  
N. Ene ◽  
...  

Squeeze film dampers (SFD) are devices utilized to control the shafts of high-speed rotating machinery. A dual squeeze film damper (DSFD) consists of two squeeze film bearings that are separated by a sleeve, which is released when the rotor experiences abnormal operating conditions. In this part of our study of DSFD we analyze the case when both the inner and the outer oil films are active. We present computed and measured unbalance responses of a shaft supported in DSFD. The oil forces which are utilized in the calculation of the unbalance response are obtained from numerical solutions of the Reynolds equation. A finite-difference algorithm is utilized for solving the pressure equation within the calculation of the dynamic response of the shaft.


Author(s):  
L. Moraru ◽  
F. Dimofte ◽  
S. Cioc ◽  
T. G. Keith ◽  
D. P. Fleming

Squeeze film dampers (SFD) are devices utilized to control vibrations of the shafts of high-speed rotating machinery. A dual squeeze film damper (DSFD) consists of two squeeze film bearings that are separated by a sleeve, which is released when the rotor experiences abnormal operating conditions. In this part of our study of DSFD we analyze the case when both the inner and the outer oil films are active and the separating sleeve is supported by a squirrel cage. Numerical results are compared with the experimental data.


Author(s):  
T. Lloyd ◽  
R. Horsnell ◽  
H. McCallion

The main and big-end bearings in reciprocating machinery are subjected to loads varying both in magnitude and direction. At present the only guidance available to the designer of such bearings may be a comparison of bearing performance in similar engines and it is fundamental to the introduction of improved design criteria that a prediction of the journal locus, peak pressures, and oil flow be readily available for a proposed geometry and loading. In this paper a numerical method of solution of this problem, utilizing a high-speed digital computer with a large one-level store, is described. The method rests on the assumption of isothermal conditions in the oil film and on the unimportance of the inertia forces associated with the journal accelerations. Numerical solutions of the Reynolds equation are obtained and stored for both wedge and squeeze film terms, at a number of journal eccentricities, by using an iterative method. The oil film force and the derivatives of this force with respect to both the journal centre position and its velocity are then found by summing these pressure distributions in the required proportions. At intermediate eccentricities, the required pressure distributions are obtained by interpolation before they are summed. The journal centre locus is obtained from a step-by-step solution of two simultaneous, ordinary differential equations involving the oil film data and the external load. In addition to the locus, the maximum pressure at any instant, the oil flow, and the friction work are calculated. For big-end bearings, journal rotational velocity is not constant and this is allowed for in the analysis. The computer program described needs no input apart from the bearing geometry and operating conditions and, because of refinement of the iteration and the integration procedures, it is economic to use for routine design studies.


2019 ◽  
Vol 43 (3) ◽  
pp. 306-321 ◽  
Author(s):  
Maxime Perreault ◽  
Sina Hamzehlouia ◽  
Kamran Behdinan

In high-speed turbomachinery, the presence of rotor vibrations, which produce undesirable noise or shaft deflection and losses in performance, has brought up the need for the application of a proper mechanism to attenuate the vibration amplitudes. Squeeze-film dampers (SFDs) are a widely employed solution to the steady-state vibrations in high-speed turbomachinery. SFDs contain a thin film of lubricant that is susceptible to changes in temperature. For this reason, the analysis of thermohydrodynamic (THD) effects on the SFD damping properties is essential. This paper develops a computational fluid dynamics (CFD) model to analyze the THD effects in SFDs, and enabling the application of CFD analysis to be a base-line for validating the accuracy of analytical THD SFD models. Specifically, the CFD results are compared against numerical simulations at different operating conditions, including eccentricity ratios and journal whirl speeds. The comparisons demonstrate the effective application of CFD for THD analysis of SFDs. Additionally, the effect of the lubricant THDs on the viscosity, maximum and mass-averaged temperature, as well as heat generation rates inside the SFD lubricant are analyzed. The temperature of the lubricant is seen to rise with increasing whirl speed, eccentricity ratios, damper radial clearance, and shaft radii.


1993 ◽  
Vol 115 (2) ◽  
pp. 353-359 ◽  
Author(s):  
A. El-Shafei

A new concept for actively controlling high-speed rotating machinery is investigated both analyically and experimentally. The controlling mechanism consists of a hybrid squeeze film damper (patent pending) that can be adaptively controlled to change its characteristics according to the instructions of a controller. In an extreme case the hybrid damper can act as a long damper, which is shown to be effective in reducing the amplitude of vibration of rotating machinery. In the other extreme the hybrid damper acts as a short damper, which is shown to be effective in reducing the force transmitted to the support. In the long damper configuration the oil flow is circumferential, while in the short damper configuration the oil flow is predominantly axial. The hybrid damper is designed to operate in either the short or the long damper configuration by controlling the positions of two movable sealing rings. The hybrid damper was tested on a Bently Nevada Rotor Kit and it is shown experimentally that the long damper configuration is extremely efficient at controlling the amplitude of vibration and the short damper configuration reduces the force transmitted to the support.


2022 ◽  
Vol 12 (2) ◽  
pp. 615
Author(s):  
Haobo Wang ◽  
Yulai Zhao ◽  
Zhong Luo ◽  
Qingkai Han

Squeeze film damper (SFD) is widely used in the vibration suppression of aeroengine rotor systems, but will cause complex motions of the rotor system under specific operating conditions. In this paper, a lumped-mass dynamic model of the high-pressure rotor system in an aeroengine is established, and the nonlinear stiffness and damping formula of SFD are introduced into the above model. The vibration responses of the rotor system under different rotating speeds and with different unbalances are investigated numerically, and the influence of SFD on the rotor system vibration and the change of suppression ability are compared and analyzed. The results show that in the case of high speed, together with a small unbalance, the rotor system will perform a complex vibration or a bistable vibration due to SFD. If the unbalance is properly increased under the same case of high speed, the vibration of the rotor becomes single-harmonic and the bistable vibration disappears. The research results can provide a helpful reference for analyzing complex vibration mechanisms of the rotor system with SFD and achieving an effective vibration suppression through unbalance regulation.


Author(s):  
Zhu Changsheng

Abstract Based on lots of data from an experiment of a high-speed rotor supported on squeeze film dampers, this paper analyses that how the bistable jump affects the reliability of squeeze film dampers, if the rotor system has to frequently pass through the bistable oparation speed range. It is shown that the change of the rotor vibration amplitudes caused by times of passed through bistable operation speed range is more significant than that caused by steady operating time. The users must pay much attention to the bistable jump phenomenon in the successful application of squeeze film dampers.


Author(s):  
Praneetha Boppa ◽  
Aarthi Sekaran ◽  
Gerald Morrison

Squeeze film dampers (SFDs) are used in the high speed turbo machinery industry and aerospace industry as a means to reduce vibration amplitude, to provide damping, to improve dynamic stability of the rotor bearing system and to isolate structural components. Past studies have not included effects of variation of the stator geometries in a squeeze film damper. A central groove added to the squeeze film land is hypothesized to provide a uniform flow source which theory predicts will result in forces less than one fourth of that seen in SFDs without a central groove. In the present study, 3D numerical simulations of SFDs with different size central grooves on the squeeze film land are performed to predict the variation of the dynamic pressure profiles. The numerical model and method have been validated via comparison to experimental data for a SFD without a central groove. When a central groove is added to the squeeze film land, the pressures generated are reduced to half of that generated when run without a central groove on the land. The amount of reduction in pressure values depends on the volume of the groove, not on the aspect ratio of the groove. Addition of a central groove reduces the pressures, rigidity developed in squeeze film land, and forces generated by squeeze film damper.


Author(s):  
J. Y. Zhao ◽  
I. W. Linnett ◽  
E. J. Hahn

This paper proposes an improved squeeze film damper which will prevent the bistable operation associated with conventional squeeze film dampers at large unbalances and/or at small bearing parameters. It consists of a conventional squeeze film damper with a flexibly supported outer ring. This secondary flexible support is considered to be massless, and to have a constant stiffness and damping. The effectiveness of this damper in preventing bistable operation is investigated over a wide range of operating conditions for a rigid rotor supported on a centrally preloaded squeeze film damper. It is shown that depending on relevant parameters such as the stiffness ratio between the secondary support and the retaining spring, the damping coefficient of the support, and the mass ratio between the damper outer ring and the rotor, this proposed damper is very effective in preventing bistable operation even for high unbalance conditions.


Author(s):  
Bugra Ertas ◽  
Adolfo Delgado

The following paper presents a new gas bearing concept that targets machine applications in the megawatt (MW) power range. The concept involves combining a compliant hybrid gas bearing (CHGB) with 2 hermetically sealed squeeze film damper (HSFD) modules installed in the bearing support damper cavities. The main aim of the research was to demonstrate gas bearing-support damping levels using HSFD that rival conventional open-flow squeeze film dampers (SFD) in industry. A detailed description of the bearing design and functionality is discussed while anchoring the concept through a brief recap of past gas bearing concepts. Proof-of-concept experimental testing is presented involving parameter identification of the bearing support force coefficients along with a demonstration of speed and load capability using recessed hydrostatic pads. Lastly, a landing test was performed on the bearing at high speed and load with porous carbon pads to show capability of sustaining rubs at high speeds. The component testing revealed robust viscous damping in the bearing support, which was shown to be comparable to existing state of the art SFD concepts. The damping and stiffness of the system portrayed moderate frequency dependency, which was simulated using a 2D Reynolds based incompressible fluid flow model. Lastly, rotating tests demonstrated the ability of the gas bearing concept to sustain journal excursions and loads indicative of critical speed transitions experienced in large turbomachinery.


Sign in / Sign up

Export Citation Format

Share Document