Evaluation of Turbulence Models for Predicting Buoyant Flows

1990 ◽  
Vol 112 (4) ◽  
pp. 945-951 ◽  
Author(s):  
A. Shabbir ◽  
D. B. Taulbee

Experimental data for the buoyant axisymmetric plume are used to validate certain closure hypotheses employed in turbulence model equations for calculating buoyant flows. Closure formulations for the turbulent transport of momentum, thermal energy, kinetic energy, and squared temperature used in the k–ε and algebraic stress models are investigated. Experimental data for the mean velocity, mean temperature, and kinetic energy are used in the closure formulation to obtain Reynolds stresses, heat fluxes, etc., which are then compared with their measured values.

1992 ◽  
Vol 237 ◽  
pp. 301-322 ◽  
Author(s):  
Ji Ryong Cho ◽  
Myung Kyoon Chung

By considering the entrainment effect on the intermittency in the free boundary of shear layers, a set of turbulence model equations for the turbulent kinetic energy k, the dissipation rate ε, and the intermittency factor γ is proposed. This enables us to incorporate explicitly the intermittency effect in the conventional K–ε turbulence model equations. The eddy viscosity νt is estimated by a function of K, ε and γ. In contrast to the closure schemes of previous intermittency modelling which employ conditional zone averaged moments, the present model equations are based on the conventional Reynolds averaged moments. This method is more economical in the sense that it halves the number of partial differential equations to be solved. The proposed K–ε–γ model has been applied to compute a plane jet, a round jet, a plane far wake and a plane mixing layer. The computational results of the model show considerable improvement over previous models for all these shear flows. In particular, the spreading rate, the centreline mean velocity and the profiles of Reynolds stresses and turbulent kinetic energy are calculated with significantly improved accuracy.


2001 ◽  
Vol 124 (1) ◽  
pp. 86-99 ◽  
Author(s):  
G. A. Gerolymos ◽  
J. Neubauer ◽  
V. C. Sharma ◽  
I. Vallet

In this paper an assessment of the improvement in the prediction of complex turbomachinery flows using a new near-wall Reynolds-stress model is attempted. The turbulence closure used is a near-wall low-turbulence-Reynolds-number Reynolds-stress model, that is independent of the distance-from-the-wall and of the normal-to-the-wall direction. The model takes into account the Coriolis redistribution effect on the Reynolds-stresses. The five mean flow equations and the seven turbulence model equations are solved using an implicit coupled OΔx3 upwind-biased solver. Results are compared with experimental data for three turbomachinery configurations: the NTUA high subsonic annular cascade, the NASA_37 rotor, and the RWTH 1 1/2 stage turbine. A detailed analysis of the flowfield is given. It is seen that the new model that takes into account the Reynolds-stress anisotropy substantially improves the agreement with experimental data, particularily for flows with large separation, while being only 30 percent more expensive than the k−ε model (thanks to an efficient implicit implementation). It is believed that further work on advanced turbulence models will substantially enhance the predictive capability of complex turbulent flows in turbomachinery.


2002 ◽  
Vol 124 (3) ◽  
pp. 668-677 ◽  
Author(s):  
G. M. Bianchi ◽  
G. Cantore ◽  
P. Parmeggiani ◽  
V. Michelassi

The linear k-ε model, in its different formulations, still remains the most widely used turbulence model for the solutions of internal combustion engine (ICE) flows thanks to the use of only two scale-determining transport variables and the simple constitutive relation. This paper discusses the application of nonlinear k-ε turbulence models for internal combustion engine flows. Motivations to nonlinear eddy viscosity models use arise from the consideration that such models combine the simplicity of linear eddy-viscosity models with the predictive properties of second moment closure. In this research the nonlinear k-ε models developed by Speziale in quadratic expansion, and Craft et al. in cubic expansion, have been applied to a practical tumble flow. Comparisons between calculated and measured mean velocity components and turbulence intensity were performed for simple flow structure case. The effects of quadratic and cubic formulations on numerical predictions were investigated too, with particular emphasis on anisotropy and influence of streamline curvature on Reynolds stresses.


Author(s):  
D. I. Maldonado ◽  
J. K. Abrantes ◽  
L. F. A. Azevedo ◽  
A. O. Nieckele

Impinging jets are an efficient mechanism to enhance wall heat transfer, and are widely used in engineering applications. The flow field of an impinging jet is quite complex and it is a challenging case for turbulence models validation as well as measurements techniques. In the present work, a detailed investigation of a cold jet impinging on a hot plate operating in the turbulent flow regime was conducted. The flow field was characterized by both Laser Doppler Anemometry and Particle Image Velocimetry (PIV) techniques in order to collect 1st and 2nd order velocity statistics to allow a reliable assessment of the numerical simulations. Comparison was performed with two turbulence methodologies: RANS (κ–ω SST model) and LES (Dynamic Smagorinsky model). The comparison was performed to assess LES feasibility and accuracy in capturing the anisotropic structures that several tested RANS models missed. The mean velocity, instantaneous velocity, Reynolds stresses and Nusselt profiles obtained numerically are compared with experimental data. A physical insight about the general flow dynamics was obtained with the extensive amount of information available from the LES.


The ‘law of the wall’ for the inner part of a turbulent shear flow over a solid surface is one of the cornerstones of fluid dynamics, and one of the very few pieces of turbulence theory whose results include a simple analytic function for the mean velocity distribution, the logarithmic law. Various aspects of the law have recently been questioned, and this paper is a summary of the present position. Although the law of the wall for velocity has apparently been confirmed by experiment well outside its original range, the law of the wall for temperature seems to apply only to very simple flows. Since the two laws are derived by closely analogous arguments this throws suspicion on the law of the wall for velocity. Analysis of simulation data, for all the Reynolds stresses including the shear stress, shows that law-of-the-wall scaling fails spectacularly in the viscous wall region, even when the logarithmic law is relatively well behaved. Virtually all turbulence models are calibrated to reproduce the law of the wall in simple flows, and we discuss whether, in practice or in principle, their range of validity is larger than that of the law of the wall itself: the present answer is that it is not; so that when the law of the wall (or the mixing-length formula) fails, current Reynolds-averaged turbulence models are likely to fail too.


Author(s):  
B. A. Younis ◽  
B. Weigand ◽  
F. Mohr ◽  
M. Schmidt

We propose a new approach to modeling the effects of system rotation on the turbulent scalar fluxes. The approach is based on extension to rotating frames of an algebraic model derived using tensor representation theory. The model is formulated to allow for the turbulent scalar fluxes to depend on the details of the turbulence field (via the Reynolds stresses), and on the gradients of both the mean velocity and temperature. Such dependence, which is absent from conventional models, is required by the exact equations governing the transport of the heat fluxes. The model’s performance is assessed by comparisons with results from recent Direct Numerical Simulations of flows in channels rotated about their streamwise, spanwise and wall-normal axes. The results show that the model yields results that are in good correspondence with the DNS results.


1993 ◽  
Vol 115 (1) ◽  
pp. 109-114 ◽  
Author(s):  
T.-M. Liou ◽  
Y.-Y. Wu ◽  
Y. Chang

Laser-Doppler velocimeter measurements of mean velocities, turbulence intensities, and Reynolds stresses are presented for periodic fully developed flows in a channel with square rib-disturbed walls on two opposite sides. Quantities such as the vorticity thickness and turbulent kinetic energy are used to characterize the flow. The investigated flow was periodic in space. The Reynolds number based on the channel hydraulic diameter was 3.3×104. The ratios of pitch to rib-height and rib-height to chamber-height were 10 and 0.133, respectively. Regions where maximum and minimum Reynolds stress and turbulent kinetic energy occurred were identified from the results. The growth rate of the shear layers of the present study was compared with that of a backward-facing step. The measured turbulence anisotropy and structure parameter distribution were used to examine the basic assumptions embedded in the k–ε and k–ε–A models. For a given axial station, the peak axial mean-velocity was found not to occur at the center point. The secondary flow was determined to be Prandtl’s secondary flow of the second kind according to the measured streamwise mean vorticity and its production term.


2002 ◽  
Vol 451 ◽  
pp. 383-410 ◽  
Author(s):  
DAVID K. BISSET ◽  
JULIAN C. R. HUNT ◽  
MICHAEL M. ROGERS

The velocity fields of a turbulent wake behind a flat plate obtained from the direct numerical simulations of Moser et al. (1998) are used to study the structure of the flow in the intermittent zone where there are, alternately, regions of fully turbulent flow and non-turbulent velocity fluctuations on either side of a thin randomly moving interface. Comparisons are made with a wake that is ‘forced’ by amplifying initial velocity fluctuations. A temperature field T, with constant values of 1.0 and 0 above and below the wake, is transported across the wake as a passive scalar. The value of the Reynolds number based on the centreplane mean velocity defect and half-width b of the wake is Re ≈ 2000.The thickness of the continuous interface is about 0.07b, whereas the amplitude of fluctuations of the instantaneous interface displacement yI(t) is an order of magnitude larger, being about 0.5b. This explains why the mean statistics of vorticity in the intermittent zone can be calculated in terms of the probability distribution of yI and the instantaneous discontinuity in vorticity across the interface. When plotted as functions of y−yI the conditional mean velocity 〈U〉 and temperature 〈T〉 profiles show sharp jumps at the interface adjacent to a thick zone where 〈U〉 and 〈T〉 vary much more slowly.Statistics for the conditional vorticity and velocity variances, available in such detail only from DNS data, show how streamwise and spanwise components of vorticity are generated by vortex stretching in the bulges of the interface. While mean Reynolds stresses (in the fixed reference frame) decrease gradually in the intermittent zone, conditional stresses are roughly constant and then decrease sharply towards zero at the interface. Flow fields around the interface, analysed in terms of the local streamline pattern, confirm and explain previous results that the advancement of the vortical interface into the irrotational flow is driven by large-scale eddy motion.Terms used in one-point turbulence models are evaluated both conventionally and conditionally in the interface region, and the current practice in statistical models of approximating entrainment by a diffusion process is assessed.


Author(s):  
G. D. MacIsaac ◽  
S. A. Sjolander ◽  
T. J. Praisner

Experimental measurements of the mean and turbulent flow field were preformed downstream of a low-speed linear turbine cascade. The influence of turbulence on the production of secondary losses is examined. Steady pressure measurements were collected using a seven-hole pressure probe and the turbulent flow quantities were measured using a rotatable x-type hotwire probe. Each probe was traversed downstream of the cascade along planes positioned at three axial locations: 100%, 120% and 140% of the axial chord (Cx) downstream of the leading edge. The seven-hole pressure probe was used to determine the local total and static pressure as well as the three mean velocity components. The rotatable x-type hotwire probe, in addition to the mean velocity components, provided the local Reynolds stresses and the turbulent kinetic energy. The axial development of the secondary losses is examined in relation to the rate at which mean kinetic energy is transferred to turbulent kinetic energy. In general, losses are generated as a result of the mean flow dissipating kinetic energy through the action of viscosity. The production of turbulence can be considered a preliminary step in this process. The measured total pressure contours from the three axial locations (1.00, 1.20 and 1.40Cx) demonstrate the development of the secondary losses. The peak loss core in each plane consists mainly of low momentum fluid that originates from the inlet endwall boundary layer. There are, however, additional losses generated as the flow mixes with downstream distance. These losses have been found to relate to the turbulent Reynolds stresses. An examination of the turbulent deformation work term demonstrates a mechanism of loss generation in the secondary flow region. The importance of the Reynolds shear stress to this process is explored in detail.


2016 ◽  
Vol 46 (9) ◽  
pp. 2623-2643 ◽  
Author(s):  
R. M. Holmes ◽  
L. N. Thomas

AbstractTropical instability waves (TIWs) and equatorial Kelvin waves are dominant sources of intraseasonal variability in the equatorial Pacific Ocean, and both play important roles in the heat and momentum budgets of the large-scale flow. While individually they have been well studied, little is known about how these two features interact, although satellite observations suggest that TIW propagation speed and amplitude are modulated by Kelvin waves. Here, the influence of Kelvin waves on TIW kinetic energy (TIWKE) is examined using an ensemble set of 1/4° ocean model simulations of the equatorial Pacific Ocean. The results suggest that TIWKE can be significantly modified by 60-day Kelvin waves. To leading order, TIWs derive kinetic energy from the meridional shear and available potential energy of the background zonal currents, while losing TIWKE to friction and the radiation of waves. The passage of Kelvin waves disrupts this balance. Downwelling (upwelling) Kelvin waves induce decay (growth) in TIWKE through modifications to the background currents and the TIWs’ Reynolds stresses. These modulations in TIWKE affect eddy heat fluxes and the downward radiation of waves, with implications for the variability of SST and the energetics of abyssal flows in the eastern equatorial Pacific.


Sign in / Sign up

Export Citation Format

Share Document