Experimental and Numerical Investigation of a Cold Turbulent Jet Impinging on a Hot Plate

Author(s):  
D. I. Maldonado ◽  
J. K. Abrantes ◽  
L. F. A. Azevedo ◽  
A. O. Nieckele

Impinging jets are an efficient mechanism to enhance wall heat transfer, and are widely used in engineering applications. The flow field of an impinging jet is quite complex and it is a challenging case for turbulence models validation as well as measurements techniques. In the present work, a detailed investigation of a cold jet impinging on a hot plate operating in the turbulent flow regime was conducted. The flow field was characterized by both Laser Doppler Anemometry and Particle Image Velocimetry (PIV) techniques in order to collect 1st and 2nd order velocity statistics to allow a reliable assessment of the numerical simulations. Comparison was performed with two turbulence methodologies: RANS (κ–ω SST model) and LES (Dynamic Smagorinsky model). The comparison was performed to assess LES feasibility and accuracy in capturing the anisotropic structures that several tested RANS models missed. The mean velocity, instantaneous velocity, Reynolds stresses and Nusselt profiles obtained numerically are compared with experimental data. A physical insight about the general flow dynamics was obtained with the extensive amount of information available from the LES.

2002 ◽  
Vol 124 (3) ◽  
pp. 668-677 ◽  
Author(s):  
G. M. Bianchi ◽  
G. Cantore ◽  
P. Parmeggiani ◽  
V. Michelassi

The linear k-ε model, in its different formulations, still remains the most widely used turbulence model for the solutions of internal combustion engine (ICE) flows thanks to the use of only two scale-determining transport variables and the simple constitutive relation. This paper discusses the application of nonlinear k-ε turbulence models for internal combustion engine flows. Motivations to nonlinear eddy viscosity models use arise from the consideration that such models combine the simplicity of linear eddy-viscosity models with the predictive properties of second moment closure. In this research the nonlinear k-ε models developed by Speziale in quadratic expansion, and Craft et al. in cubic expansion, have been applied to a practical tumble flow. Comparisons between calculated and measured mean velocity components and turbulence intensity were performed for simple flow structure case. The effects of quadratic and cubic formulations on numerical predictions were investigated too, with particular emphasis on anisotropy and influence of streamline curvature on Reynolds stresses.


The ‘law of the wall’ for the inner part of a turbulent shear flow over a solid surface is one of the cornerstones of fluid dynamics, and one of the very few pieces of turbulence theory whose results include a simple analytic function for the mean velocity distribution, the logarithmic law. Various aspects of the law have recently been questioned, and this paper is a summary of the present position. Although the law of the wall for velocity has apparently been confirmed by experiment well outside its original range, the law of the wall for temperature seems to apply only to very simple flows. Since the two laws are derived by closely analogous arguments this throws suspicion on the law of the wall for velocity. Analysis of simulation data, for all the Reynolds stresses including the shear stress, shows that law-of-the-wall scaling fails spectacularly in the viscous wall region, even when the logarithmic law is relatively well behaved. Virtually all turbulence models are calibrated to reproduce the law of the wall in simple flows, and we discuss whether, in practice or in principle, their range of validity is larger than that of the law of the wall itself: the present answer is that it is not; so that when the law of the wall (or the mixing-length formula) fails, current Reynolds-averaged turbulence models are likely to fail too.


1990 ◽  
Vol 112 (4) ◽  
pp. 945-951 ◽  
Author(s):  
A. Shabbir ◽  
D. B. Taulbee

Experimental data for the buoyant axisymmetric plume are used to validate certain closure hypotheses employed in turbulence model equations for calculating buoyant flows. Closure formulations for the turbulent transport of momentum, thermal energy, kinetic energy, and squared temperature used in the k–ε and algebraic stress models are investigated. Experimental data for the mean velocity, mean temperature, and kinetic energy are used in the closure formulation to obtain Reynolds stresses, heat fluxes, etc., which are then compared with their measured values.


1982 ◽  
Vol 119 ◽  
pp. 121-153 ◽  
Author(s):  
Udo R. Müller

An experimental study of a steady, incompressible, three-dimensional turbulent boundary layer approaching separation is reported. The flow field external to the boundary layer was deflected laterally by turning vanes so that streamwise flow deceleration occurred simultaneous with cross-flow acceleration. At 21 stations profiles of the mean-velocity components and of the six Reynolds stresses were measured with single- and X-hot-wire probes, which were rotatable around their longitudinal axes. The calibration of the hot wires with respect to magnitude and direction of the velocity vector as well as the method of evaluating the Reynolds stresses from the measured data are described in a separate paper (Müller 1982, hereinafter referred to as II). At each measuring station the wall shear stress was inferred from a Preston-tube measurement as well as from a Clauser chart. With the measured profiles of the mean velocities and of the Reynolds stresses several assumptions used for turbulence modelling were checked for their validity in this flow. For example, eddy viscosities for both tangential directions and the corresponding mixing lengths as well as the ratio of resultant turbulent shear stress to turbulent kinetic energy were derived from the data.


2002 ◽  
Vol 451 ◽  
pp. 383-410 ◽  
Author(s):  
DAVID K. BISSET ◽  
JULIAN C. R. HUNT ◽  
MICHAEL M. ROGERS

The velocity fields of a turbulent wake behind a flat plate obtained from the direct numerical simulations of Moser et al. (1998) are used to study the structure of the flow in the intermittent zone where there are, alternately, regions of fully turbulent flow and non-turbulent velocity fluctuations on either side of a thin randomly moving interface. Comparisons are made with a wake that is ‘forced’ by amplifying initial velocity fluctuations. A temperature field T, with constant values of 1.0 and 0 above and below the wake, is transported across the wake as a passive scalar. The value of the Reynolds number based on the centreplane mean velocity defect and half-width b of the wake is Re ≈ 2000.The thickness of the continuous interface is about 0.07b, whereas the amplitude of fluctuations of the instantaneous interface displacement yI(t) is an order of magnitude larger, being about 0.5b. This explains why the mean statistics of vorticity in the intermittent zone can be calculated in terms of the probability distribution of yI and the instantaneous discontinuity in vorticity across the interface. When plotted as functions of y−yI the conditional mean velocity 〈U〉 and temperature 〈T〉 profiles show sharp jumps at the interface adjacent to a thick zone where 〈U〉 and 〈T〉 vary much more slowly.Statistics for the conditional vorticity and velocity variances, available in such detail only from DNS data, show how streamwise and spanwise components of vorticity are generated by vortex stretching in the bulges of the interface. While mean Reynolds stresses (in the fixed reference frame) decrease gradually in the intermittent zone, conditional stresses are roughly constant and then decrease sharply towards zero at the interface. Flow fields around the interface, analysed in terms of the local streamline pattern, confirm and explain previous results that the advancement of the vortical interface into the irrotational flow is driven by large-scale eddy motion.Terms used in one-point turbulence models are evaluated both conventionally and conditionally in the interface region, and the current practice in statistical models of approximating entrainment by a diffusion process is assessed.


1990 ◽  
Vol 112 (3) ◽  
pp. 437-443 ◽  
Author(s):  
J. R. Pietrzyk ◽  
D. G. Bogard ◽  
M. E. Crawford

This paper presents the results of a detailed hydrodynamic study of a row of inclined jets issuing into a crossflow with a density ratio of injectant to free stream of 2. Laser-Doppler anemometry was used to measure the vertical and streamwise components of velocity for a jet-to-free stream mass flux ratio of 0.5. Mean velocity components and turbulent Reynolds normal and shear stress components were measured at locations in a vertical plane along the centerline of the jet from 1 diameter upstream to 30 diameters downstream of the jet. The results, which have application to film cooling, give a quantitative picture of the entire flow field, from the approaching flow upstream of the jet, through the interaction region of the jet and free stream, to the relaxation region downstream where the flow field approaches that of a standard turbulent boundary layer.


Author(s):  
K. M. Britchford ◽  
J. F. Carrotte ◽  
S. J. Stevens ◽  
J. J. McGuirk

This paper describes an investigation of the mean and fluctuating flow field within an annular S-shaped duct which is representative of that used to connect the compressor spools of aircraft gas turbine engines. Data was obtained from a fully annular test facility using a 3-component Laser Doppler Anemometry (LDA) system. The measurements indicate that development of the flow within the duct is complex and significantly influenced by the combined effects of streamwise pressure gradients and flow curvature. In addition CFD predictions of the flow, using both the k-ε and Reynolds stress transport equation turbulence models, are compared with the experimental data. Whereas curvature effects are not described properly by the k-ε model, such effects are captured more accurately by the Reynolds stress model leading to a better prediction of the Reynolds shear stress distribution. This, in turn, leads to a more accurate prediction of the mean velocity profiles, as reflected by the boundary layer shape parameters, particularly in the critical regions of the duct where flow separation is most likely to occur.


2007 ◽  
Vol 129 (4) ◽  
pp. 1095-1105 ◽  
Author(s):  
Angelo Algieri ◽  
Sergio Bova ◽  
Carmine De Bartolo ◽  
Alessandra Nigro

An experimental and numerical analysis of the intake system of a production high performance four-stroke motorcycle engine was carried out. The aim of the work was to characterize the fluid dynamic behavior of the engine during the intake phase and to evaluate the capability of the most commonly used two-equation turbulence models to reproduce the in-cylinder flow field for a very complex engine head. Pressure and mass flow rates were measured on a steady-flow rig. Furthermore, velocity measurements were obtained within the combustion chamber using laser Doppler anemometry (LDA). The experimental data were compared to the numerical results using four two-equation turbulence models (standard k-ε, realizable k-ε, Wilcox k-ω, and SST k-ω models). All the investigated turbulence models well predicted the global performances of the intake system and the mean flow structure inside the cylinder. Some differences between measurements and computations were found close to the cylinder head while an improving agreement was evident moving away from the engine head. Furthermore, the Wilcox k-ω model permitted the flow field inside the combustion chamber of the engine to be reproduced and the overall angular momentum of the flux with respect to the cylinder axis to be quantified more properly.


1999 ◽  
Vol 121 (4) ◽  
pp. 725-734 ◽  
Author(s):  
Shou-Shing Hsieh ◽  
Ping-Ju Chen ◽  
Hsiang-Jung Chin

Laser-Doppler anemometry has been applied to approximately 2-D turbulent air flow in a rotating 2 pass channel of square cross section. The axis of rotation is normal to the axis of the duct, and the flow is radially outward/inward. The duct is of finite length and the walls are isothermal. Smooth channels are experimentally conducted with rotational speeds of 100, 200, and 300 rpm with ReH = 5000 and 10,000. The main features of the flow, flow separation and mean velocity as well as turbulent intensity at particular location along the downstream are presented. The measured flow field is found to be quite complex, consisting of secondary cross-stream and radially outward flows due to the Coriolis effects and centrifugal forces.


Author(s):  
Qiuchen Wang ◽  
Qiyu Huang ◽  
Xu Sun ◽  
Jun Zhang ◽  
Soroor Karimi ◽  
...  

Abstract Submerged impingement jets are widely used in erosion/corrosion investigation as it is easy to control standoff distance as well as jet angle and flow velocities in experiments. In addition to experiments, typically Computational Fluid Dynamics (CFD) technique has been used to simulate slurry flow in this geometry to investigate erosion process and develop and verify erosion equations. This is done by solving Reynolds Averaged Navier-Stokes (RANS) equations with turbulence models, time-averaged fluid flow is revealed, and thus time-averaged erosion rate can be obtained by tracking particles in the fluid flow field. The current work shows that this seemingly simple flow displays unsteady flow structures in the stagnation zone of the flow field and its effects on erosion process was unclear. In this study, Large Eddy Simulation (LES) is used to simulate unsteady fluid flow in different impingement jets in Eulerian scheme. Then particles are injected randomly in the surface and tracked transiently to simulate unsteady erosion process in Lagrangian scheme. Finally, an erosion equation is used to calculate solid particle erosion rates. The LES Eulerian-Lagrangian erosion modeling are further validated by experimental fluid velocities and erosion profile measured before. It was found the accuracy of erosion prediction of small particles can be improved and unsteady properties can be well resolved by using this method.


Sign in / Sign up

Export Citation Format

Share Document