Topics in Gradient Maintenance and Salt Recycling in an Operational Solar Pond

1992 ◽  
Vol 114 (1) ◽  
pp. 62-69 ◽  
Author(s):  
A. H. P. Swift ◽  
Peter Golding

Since 1986, the 3355 m2 salt gradient solar pond facility in El Paso, Texas, has operated with a temperature difference between the upper and lower zones of 55 to 75° C while delivering industrial process heat, grid-connected electrical power, and thermal energy for the experimental production of desalted water. Because the El Paso solar pond is an inland facility, it is necessary to recycle the salt in a sustainable salt management system. A method that uses the main pond surface for initial brine concentration and short-term storage was developed after it became evident that the original evaporation pond system was undersized. This paper examines the method for brine concentration and storage, the effects of a brine storage zone on pond operation, and the installation of an enhanced evaporation net system and an automatic scanning injection system. A short description of the performance history and current status of the project is also included.

2001 ◽  
Vol 123 (3) ◽  
pp. 178-178 ◽  
Author(s):  
Huanmin Lu and ◽  
Andrew H. P. Swift

The El Paso Solar Pond, a research, development, and demonstration project operated by the University of Texas at El Paso, is a salinity-gradient solar pond with a surface area of 3,000 m2 and a depth of 3.2 m. The pond utilizes an aqueous solution of predominantly sodium chloride (NaCl). The surface convective zone, main gradient zone, and bottom convective zone are approximately 0.6 m, 1.4 m, and 1.2 m, respectively. The project, located on the property of Bruce Foods, Inc., was initiated in 1983 in cooperation with the U.S. Bureau of Reclamation. Since then, the El Paso Solar Pond has successfully developed a series of technologies for solar pond operation and maintenance, as well as demonstrated several different applications. In 1985, the El Paso Solar Pond became the first in the world to deliver industrial process heat to a commercial manufacturer; in 1986 became the first solar pond electric power generating facility in the United States; and in 1987 became the nation’s first experimental solar pond powered water desalting facility. Currently, the major research at El Paso Solar Pond is focused on desalination and brine management technologies. The long-term goal of this research is to develop a systems approach for desalination/brine management via a multiple process desalination coupled with solar ponds. This systems approach will reuse the brine concentrate rejected from desalting plants thereby negating the need for disposal (zero discharge), and provide additional pollution-free renewable energy for the desalting process.


2004 ◽  
Vol 126 (2) ◽  
pp. 759-767 ◽  
Author(s):  
Huanmin Lu ◽  
Andrew H. P. Swift ◽  
Herbert D. Hein, ◽  
John C. Walton

The El Paso salinity gradient solar pond, initiated in 1983, has been in operation since 1985. Through 16 years of research and operation, the El Paso Solar Pond has successfully demonstrated applications including desalination, waste brine management, industrial process heat production, and electricity generation; and has developed and implemented key technical advancements to improve the technical viability and economic feasibility of salinity gradient solar ponds, including: 1) an automated instrumentation monitoring system, 2) a stability analysis strategy and high temperature (60–90°C) gradient maintenance methods, 3) a scanning injection technique for improved salinity gradient construction and maintenance, 4) new liner technology, and 5) an improved heat extraction system.


1989 ◽  
Vol 111 (4) ◽  
pp. 330-337 ◽  
Author(s):  
R. L. Reid ◽  
A. H. P. Swift ◽  
W. J. Boegli ◽  
V. R. Kane ◽  
B. A. Castaneda

A 3355 square meter, 3.3 m deep water storage pond in El Paso, Tex. was converted to a salt-gradient solar pond to supply industrial process heat to an adjacent food processing plant. Approximately 1.9 × 106 kg of sodium chloride salt was obtained to prepare near saturated brine for pond construction. Design and construction of the solar pond are described in detail including the lining technique, salt dissolution method, diffuser design, instrumentation, maintenance of optical clarity, and gradient establishment, including resolution of initial problems in gradient stability. The solar pond has been in continuous operation for over three years.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
A. A. Abdullah ◽  
K. A. Lindsay

The quality of the stability of the nonconvective zone of a salinity-gradient solar pond (SGSP) is investigated for an operating protocol in which the flushing procedure exactly compensates for evaporation losses from the solar pond and its associated evaporation pond. The mathematical model of the pond uses simplified, but accurate, constitutive expressions for the physical properties of aqueous sodium chloride. Also, realistic boundary conditions are used for the behaviors of the upper and lower convective zones (LCZs). The performance of a salinity-gradient solar pond is investigated in the context of the weather conditions at Makkah, Saudi Arabia, for several thickness of upper convective zone (UCZ) and operating temperature of the storage zone. Spectral collocation based on Chebyshev polynomials is used to assess the quality of the stability of the pond throughout the year in terms of the time scale for the restoration of disturbances in temperature, salinity, and fluid velocity underlying the critical eigenstate. The critical eigenvalue is found to be real and negative at all times of year indicating that the steady-state configuration of the pond is always stable, and suggesting that stationary instability would be the anticipated mechanism of instability. Annual profiles of surface temperature, salinity, and heat extraction are constructed for various combinations for the thickness of the upper convective zone and storage zone temperature.


Author(s):  
Kenichi Suzuki ◽  
Y. Namita ◽  
H. Abe ◽  
I. Ichihashi ◽  
Kohei Suzuki ◽  
...  

In 1998FY, the 6 year program of piping tests was initiated with the following objectives: i) to clarify the elasto-plastic response and ultimate strength of nuclear piping, ii) to ascertain the seismic safety margin of the current seismic design code for piping, and iii) to assess new allowable stress rules. In order to resolve extensive technical issues before proceeding on to the seismic proving test of a large-scale piping system, a series of preliminary tests of materials, piping components and simplified piping systems is intended. In this paper, the current status of the piping component tests and the simplified piping system tests is reported with focus on fatigue damage evaluation under large seismic loading.


Author(s):  
Septimus van der Linden ◽  
Mario Romero

An advanced patented process [1] for generating power from waste heat sources can be put to use in Industrial operations where much of the heat is wasted and going up the stack. This waste heat can be efficiently recovered to generate electrical power. Benefits include: use of waste industrial process heat as a fuel source that, in most cases, has represented nothing more than wasted thermal pollution for decades, stable and predictable generation capability on a 24 × 7 basis. This means that as an efficiency improvement resource, unlike wind and solar, the facility continues to generate clean reliable power. One of the many advantages of generating power from waste heat is the advantage for distributed generation; by producing power closer to its ultimate use, it thereby reduces transmission line congestion and losses, in addition, distributed generation eliminates the 4% to 8% power losses due to transmission and distribution associated with central generation. Beneficial applications of heat recovery power generation can be found in numerous industries (e.g. steel, glass, cement, lime, pulp and paper, refining, electric utilities and petrochemicals), Power Generation (CHP, MSW, biomass, biofuel, traditional fuels, Gasifiers, diesel engines) and Natural Gas (pipeline compression stations, processing plants). This presentation will cover the WOW Energy technology Organic Rankine Cascading Closed Loop Cycle — CCLC, as well as provide case studies in power generation using Internal Combustion engines and Gas Turbines on pipelines, where 20% to 40% respectively additional electricity power is recovered. This is achieved without using additional fuel, and therefore improving the fuel use efficiency and resulting lower carbon footprint. The economic analysis and capital recovery payback period based on varying Utility rates will be explained as well as the potential Tax credits, Emission credits and other incentives that are often available. Further developments and Pilot plant results on fossil fired plant flue gas emissions reductions will be reported to illustrate the full potential of the WOW Energy CCLC system focusing on increasing efficiency and reducing emissions.


2019 ◽  
Vol 103 ◽  
pp. 01001
Author(s):  
Jakub Kuś ◽  
Kyrylo Rudykh ◽  
Marcin Kobas ◽  
Maciej Żołądek ◽  
Szymon Sendłak ◽  
...  

Refrigeration systems are necessary for people living in hot climates. A majority of tropical and subtropical countries uses electrical power as a source of cooling. During the seasons of high ambient temperature there is a significant cooling load due to increased level of energy consumption. Cooling systems are therefore necessary in African countries in order to keep medications and food in safe conditions. Furthermore, there is a power shortage crisis due to the high demand for cooling. TRNSYS software allows to simulate a complete solar-powered absorption cooling system. A model used in an experiment includes PV modules making it advantageous over a conventional cooling system. PV modules of assumed area are sufficient to maintain the temperature inside cooling device below 6°C over the whole year.


Sign in / Sign up

Export Citation Format

Share Document