Earthquake-Induced Instability of a Rotor Supported by Oil Film Bearings

1990 ◽  
Vol 112 (2) ◽  
pp. 160-165 ◽  
Author(s):  
Y. Hori ◽  
T. Kato

The effect of seismic waves on the stability of a Jeffcott rotor supported by oil film bearings is investigated by calculating loci of the centers of the journal and the disk using the Runge-Kutta-Gill method. It will be shown that a linearly stable rotor can become unstable under a strong artificial shock and a real seismic wave, if it is running at speeds above twice the first critical speed, which is close to the natural frequency of the rotor. Thus, it will be pointed out that the linear analysis is insufficient to examine the stability of a rotor-bearing system if the rotor is operated above twice the critical speed and a strong shock such as due to an earthquake is expected.

2002 ◽  
Vol 54 (6) ◽  
pp. 255-261 ◽  
Author(s):  
Cheng‐Hsien Chen ◽  
Chan‐Hwang Chu ◽  
Yuan Kang ◽  
Yao‐Nan Huang ◽  
Jyh‐Tong Teng

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Rui Zhu ◽  
Guang-chao Wang ◽  
Qing-peng Han ◽  
An-lei Zhao ◽  
Jian-xing Ren ◽  
...  

Rotor rub-impact has a great influence on the stability and safety of a rotating machine. This study develops a dynamic model of a two-span rotor-bearing system with rubbing faults, and numerical simulation is carried out. Moreover, frictional screws are used to simulate a rubbing state by establishing a set of experimental devices that can simulate rotor-stator friction in the rotor system. Through the experimental platform and its analysis system, the rubbing experiment was conducted, and the vibration of the rotor-bearing system before and after the critical speed is observed. Rotors running under normal condition, local slight rubbing, and severe rubbing throughout the entire cycle are simulated. Dynamic trajectories, frequency spectrum diagrams, chart of axis track, and Poincare maps are used to analyze the features of the rotor-bearing system with rub-impact faults under various parameters. The vibration characteristics of rub impact are obtained. Results show that the dynamic characteristics of the rotor-bearing system are affected by the change in velocity and degree of impact friction. The findings are helpful in further understanding the dynamic characteristics of the rub-impact fault of the two-span rotor-bearing system and provide reference for fault diagnosis.


Author(s):  
Linxiang Sun ◽  
Janusz M. Krodkiewski ◽  
Nong Zhang

Modelling and analysis of a rotor-bearing system with a new type of active oil bearing are presented. The active bearing basically consists of a flexible sleeve and a pressure chamber. The deformation of the sleeve can be controlled by the chamber pressure during the operation, and so can the pressure distribution of the oil film. Finite Element Methods (FEMs) and the Guyan condensation technique were utilised to create mathematical models for both the rotor and the flexible sleeve. The hydrodynamic pressure distribution of the oil film, for the instantaneous positions and velocities of the flexible sleeve and rotor, was approximated by Reynolds equation. The influence of the chamber pressure on the stability of the rotor system was investigated by numerical simulation based on the nonlinear model. The results showed that the stability of the rotor-bearing system can be improved effectively by implementation of the active bearing.


2009 ◽  
Vol 147-149 ◽  
pp. 450-455
Author(s):  
Stanislaw Strzelecki ◽  
Sobhy M. Ghoneam

This paper introduces the results of theoretical investigation on the dynamic characteristics of tilting 3-pad journal bearing that operates with turbulent oil film. The Reynolds, energy, viscosity and geometry equations determine the oil film pressure, temperature distributions, and oil film resultant force that are the grounds for the dynamic characteristics of bearing. These equations were solved simultaneously on the assumption of adiabatic laminar or adiabatic turbulent oil flow in the bearing gap. The stability and system damping of Jeffcott rotor operating in tilting 3-pad journal bearing was determined.


Author(s):  
R. K. Gadangi ◽  
A. B. Palazzolo

Prediction of rotor vibrations due to large imbalance requires nonlinear solution of the supporting bearings. This paper presents a methodology and results for the effects of large, sudden imbalance on the response of a multi mass rotor model supported on tilt pad journal bearings. For a given imbalance, response is obtained for rotor speeds below, above and at the rotor natural frequency. The maximum peak to peak amplitude is larger at the critical speed than at a speed above or below the critical. The imbalance response is compared with two other methods used for predicting the transient response of a rotor bearing system. The rigid rotor and nonlinear bearing model shows a response similar in shape to that obtained with a flexible rotor and nonlinear bearing model, but the magnitude is different, which reached a limiting value as the imbalance was increased. The flexible rotor and linearized bearing model predicts a similar trend as the flexible rotor and nonlinear bearing model, with increasing speed for a given imbalance, but the shape and magnitude of the orbit is completely different. The motion of rotor to static equilibrium location for the flexible rotor and nonlinear bearing model showed oscillations which diminished with time, while the rigid rotor and nonlinear bearing model does not show any oscillations.


1991 ◽  
Vol 113 (4) ◽  
pp. 508-515 ◽  
Author(s):  
J. P. Williams ◽  
D. W. Childs

The shrouded-impeller leakage path forces calculated by Childs (1987) have been analyzed to answer two questions. First, because of certain characteristics of the results of Childs, the forces could not be modeled with traditional approaches. Therefore, an approach has been devised to include the forces in conventional rotordynamic analyses. The forces were approximated by traditional stiffness, damping and inertia coefficients with the addition of whirl-frequency-dependent direct and cross-coupled stiffness terms. The forces were found to be well-modeled with this approach. Finally, the effect these forces had on a simple rotor-bearing system was analyzed, and, therefore, they, in addition to seal forces, were applied to a Jeffcott rotor. The traditional methods of dynamic system analysis were modified to incorporate the impeller forces and yielded results for the eigenproblem, frequency response, critical speed, transient response, and an iterative technique for finding the frequency of free vibration as well as system stability. All results lead to the conclusion that the forces have little influence on natural frequency but can have appreciable effects on system stability. Specifically, at higher values of fluid swirl at the leakage path entrance, relative stability is reduced. The only unexpected response characteristics that occurred are attributed to the nonlinearity of the model.


Author(s):  
Guang-hui Zhang ◽  
Gui-long Wang ◽  
Zhan-sheng Liu ◽  
Rui-xian Ma

The analytical oil film force model for floating ring seal is established including the effect of axial pressure gradient. The analytical model is based on the oil lubricated Reynolds equation and the short bearing assumption, where the fluid Lomakin effect is considered. The pressure distribution of the floating ring and static characteristics is studied by numerical simulation. The three dimensional flow model is established and solved by the CFD method. By employing the finite element method, the dynamic model of the floating ring seal-steam turbine rotor system is established. The critical speed, mode shape and dynamic response of the steam turbine rotor with different bearing support stiffness are obtained. The effect of the floating ring oil film force on the critical speed and instability speed with different bearing support stiffness is studied. The effects of floating ring parameters (groove geometrical dimensions) on dynamic response are studied, and the stability of floating ring seal-rotor system with variation of the factor is analyzed. The floating ring seal can play the role of increasing the supporting effect, which will increase the critical speed of the rotor system. The floating ring seal can cause the sub synchronous vibration and the groove can significantly increase the stability of system.


2012 ◽  
Vol 19 (6) ◽  
pp. 1297-1314 ◽  
Author(s):  
Haiyang Luo ◽  
Yuefang Wang

The nonlinear vibration of a rotor excited by transverse electromagnetic and oil-film forces is presented in this paper. The rotor-bearing system is modeled as a continuum beam which is loaded by a distributed electromagnetic load and is supported by two oil-film bearings. The governing equation of motion is derived and discretized as a group of ordinary differential equations using the Galerkin's method. The stability of the equilibrium of the rotor is analyzed with the Routh-Hurwitz criterion and the occurrence of the Andronov-Hopf bifurcation is pointed out. The approximate solution of periodic motion is obtained using the averaging method. The stability of steady response is analyzed and the amplitude-frequency curve of primary resonance is illustrated. The Runge-Kutta method is adopted to numerically solve transient response of the rotor-bearing system. Comparisons are made to present influences of electromagnetic load, oil-film force and both of them on the nonlinear vibration response. Bifurcation diagrams of the transverse motion versus rotation speed, electromagnetic parameter and bearing parameters are provided to show periodic motion, quasi-periodic motion and period-doubling bifurcations. Diagrams of time history, shaft orbit, the Poincaré section and fast Fourier transformation of the transverse vibration are presented for further understanding of the rotor response.


2011 ◽  
Vol 148-149 ◽  
pp. 3-6 ◽  
Author(s):  
Chao Feng Li ◽  
Qin Liang Li ◽  
Jie Liu ◽  
Bang Chun Wen

Multi-DOF model of double-disc rotor-bearing system taking crack and oil film support into account is established, and the continuation shooting method combined with Newmark is also applied to stability analysis of continuous system. This paper mainly studied the variation law of five parameters domain in crack depth and location, then a number of conclusions are found: first, it’s feasible to study the stability of nonlinear rotor-bearing system with crack faults using FEM; secondly, the crack depth and location has a certain impact on instability speed, but the impact is not great and owns its certain law. As the crack depth and location is getting close to the middle position of rotor, due to its impact on the oil film support, the instability speed of system increases. This method and results in this paper provides a theoretical reference for stability analysis and vibration control in more complex relevant rotor-bearing system with crack fault.


Sign in / Sign up

Export Citation Format

Share Document