Preferential Media for Abrasive Flow Machining

Author(s):  
Kamal K. Kar ◽  
N. L. Ravikumar ◽  
Piyushkumar B. Tailor ◽  
J. Ramkumar ◽  
D. Sathiyamoorthy

The abrasive flow machining (AFM) is used to deburr, radius, polish and remove recast layer of components in a wide range of applications. Material is removed from the workpiece by a flowing semisolid mass across the surface to be finished. In this study a medium for AFM has been developed from the various viscoelastic carriers and has been contrasted through experimental investigation. The viscoelastic media are selected on the basis of existing media through the studies of thermogravimetric analysis and are characterized by mechanical, as well as rheological, properties with the help of a universal testing machine and a rheometer. The performance of the medium is evaluated through the finishing criteria on a two-way AFM setup. The investigation reveals that the styrene butadiene rubber (SBR) medium gives a good improvement in surface finish. The surface improvement through SBR media is 88%. It is also found that the strain, temperature, shear rate, time of applied constant stress, cyclic loading, etc. have an impact on the mechanical and rheological properties of the newly developed medium, which are ultimately governed by the performance of the medium in the target applications.

Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 519
Author(s):  
Vitalii Bezgin ◽  
Agata Dudek ◽  
Adam Gnatowski

This paper proposes and presents the chemical modification of linear hydroxyethers (LHE) with different molecular weights (380, 640, and 1830 g/mol) with the addition of three types of rubbers (polysulfide rubber (PSR), polychloroprene rubber (PCR), and styrene-butadiene rubber (SBR)). The main purpose of choosing this type of modification and the materials used was the possibility to use it in industrial settings. The modification process was conducted for a very wide range of modifier additions (rubber) per 100 g LHE. The materials obtained in the study were subjected to strength tests in order to determine the effect of the modification on functional properties. Mechanical properties of the modified materials were improved after the application of the modifier (rubber) to polyhydroxyether (up to certain modifier content). The most favorable changes in the tested materials were registered in the modification of LHE-1830 with PSR. In the case of LHE-380 and LHE-640 modified in cyclohexanol (CH) and chloroform (CF) solutions, an increase in the values of the tested properties was also obtained, but to a lesser extent than for LHE-1830. The largest changes were registered for LHE-1830 with PSR in CH solution: from 12.1 to 15.3 MPa for compressive strength tests, from 0.8 to 1.5 MPa for tensile testing, from 0.8 to 14.7 MPa for shear strength, and from 1% to 6.5% for the maximum elongation. The analysis of the available literature showed that the modification proposed by the authors has not yet been presented in any previous scientific paper.


2017 ◽  
Vol 31 (2) ◽  
pp. 265-287 ◽  
Author(s):  
Slaviša Jovanović ◽  
Suzana Samaržija-Jovanović ◽  
Gordana Marković ◽  
Vojislav Jovanović ◽  
Tijana Adamović ◽  
...  

The goal of this work was to synthesize and characterize ternary rubber blends based on polyisoprene (natural rubber (NR)), polybutadiene rubber (BR), and styrene–butadiene rubber (SBR) (NR/BR/SBR = 25/25/50) reinforced with different loading silica (SiO2) nanoparticles (0–100 part per hundred parts of rubber (phr)). The specimens were subjected to thermooxidative aging at 100°C, for two times: at 72 and 168 h, respectively, and then mechanically stretched to fracture by tension with a Zwick 1425 (Zwick GmbH, Ulm, Germany) universal tensile testing machine. Rheological and mechanical properties were used as characterization of the ternary rubber blends. The reinforcing performance of the filler was investigated using rheometric, mechanical, and swelling measurements, thermogravimetric analysis, scanning electron microscopy, and Fourier transform infrared spectroscopy with attenuated total reflectance. Hardness, tensile strength, elongation at break, and swelling degree were assessed before and after thermal aging. There was a remarkable decrease in the optimum cure time ( tc90) and the scorch time ( ts2), which was associated with a decrease in the cure rate index of (NR/BR/SBR = 25/25/50) ternary rubber blend with 60 phr of filler loading. Interaction between rubber blend and SiO2 nano-filler is confirmed by moving absorption band from 1450 cm−1 to 1480 cm−1.


2019 ◽  
Vol 9 (23) ◽  
pp. 5188 ◽  
Author(s):  
Leslie Mariella Colunga-Sánchez ◽  
Beatriz Adriana Salazar-Cruz ◽  
José Luis Rivera-Armenta ◽  
Ana Beatriz Morales-Cepeda ◽  
Claudia Esmeralda Ramos-Gálvan ◽  
...  

In the present work, the evaluation of chicken feather particles (CFP) and styrene-butadiene/chicken feather (SBS-CF) composites as modifiers for asphalt binder is presented. It is well known that elastomers are the best asphalt modifiers, because their thermoplastic behavior assists asphalts in improving the range of their mechanical properties at both low and high temperatures. Nowadays, the use of natural products and byproducts as fillers for polymer matrices has been a matter of research, and the field of asphalt modification is not the exception. Chicken feather particles (CFP) is a waste material whose main component is keratin, which offers remarkable properties. In the present work, CFP was used as a filler of a styrene-butadiene rubber matrix (SBS) with radial structure, to obtain a composite intended as an asphalt modifier. Besides, raw CFP was also tested as an asphalt modifier. Physical, thermal and rheological properties of the modified asphalts were evaluated in order to determine their degree of modification with respect to the original asphalt. The results show that the addition of raw CFP improves some physical properties as penetration and decreases the phase separation; furthermore, the asphalt modified with CFP displayed similar rheological properties to those shown by the asphalt modified with SBS, while some other properties resulted in being even better, like the phase separation, with the advantage that the CFP comes from a natural waste product.


2013 ◽  
Vol 797 ◽  
pp. 417-422 ◽  
Author(s):  
Hang Gao ◽  
You Zhi Fu ◽  
Jian Hui Zhu ◽  
Ming Yu Wu ◽  
Yu Wen Sun

Abrasive medium plays an important role in the application of abrasive flow machining (AFM), a process that finishes complex internal and external geometries. A new abrasive medium needs to be fabricated due to a lack of literature on it. In this work, a new abrasive medium was fabricated by using styrene butadiene rubber (SBR) as carrier and DF-101S was used to study its characterization. Results showed that new abrasive medium with good fluidity and temperature stability was obtained. Processing experiments have also been carried out by using new abrasive medium and MLLD60, and ZYGO was used to study the surface characteristics of the work-piece. Experimental results indicate that the new abrasive medium is applicable to AFM process.


2016 ◽  
Vol 78 (7-2) ◽  
Author(s):  
Haryati Yaacob ◽  
Moazzam Ali Mughal ◽  
Ramadhansyah Putra Jaya ◽  
Mohd Rosli Hainin ◽  
Dewi Sri Jayanti ◽  
...  

The study investigates the rheological properties of bitumen of 60-70 penetration grade modified with Styrene Butadiene Rubber (SBR). SBR is an elastomer which is an important sort of synthetic rubber. It is a copolymer whose molecular structure primarily consists of organic compound styrene and butadiene chain. Bitumen is visco-elastic in nature. The rate of load application and temperature has a great influence on its performance. Various fundamental properties of bitumen were evaluated, namely complex shear modulus (G*), short-term ageing, long-term ageing, viscosity, penetration and softening point by using Dynamic Shear Rheometer (DSR), Rolling Thin Film Oven Test (RTFOT), Pressure Aging Vessel (PAV), Rotational Viscometer (RV), Penetrometer and Ring and Ball Test, respectively. The binders were mixed with varying percentage of SBR i.e. 0, 1, 2, 3, 4, and 5% by the weight of bitumen binder. The use of SBR has played an active role in improving the viscoelastic properties of bitumen. The use of SBR modifier changes the rheological behavior of bitumen by increasing its complex shear modulus (G*) and the resistance of mixture against permanent deformation (rutting). It was also found that increasing the content of SBR led to the increase in viscosity of modified bitumen, which helps in elevating the mixing and compaction temperature of asphalt mixtures.


2019 ◽  
Vol 28 (1) ◽  
pp. 45-53
Author(s):  
Ismaeel Moslam Alwaan

The starch-filled styrene–butadiene rubber (SBR) was prepared using a laboratory-sized two-roll mill. Starch was modified by yeast fermentation for 1 day before it was blended with SBR. The hydrophilicity of SBR was enhanced by grafting with modified starch (MST) by utilizing tetramethyl thiuram disulfide as a catalyst. The effect of modified corn starch loading on morphological, mechanical, and rheological properties of vulcanized SBR blends was investigated. Scanning electron microscope result revealed that the adhesion between the MST and SBR was weak, and the starch pulled out due to poor interfacial bonding. The lowest ultimate tensile strength, elongation at break, and tensile modulus of the SBR- g-MST were found in the sample containing 150 phr of starch. The variation of the percentage elongation of neat rubber and MST/rubber composites was 91.34%. The significant decrease in cure times was observed with the loading of MST in all blends up to 100 phr starch, while no significant change in scorch time was observed. The maximum torque, minimum torque, and cross-linking density increased as the starch loading increases up to 100 phr MST. The water absorption by the composite increases with immersion time and MST loading, although the rate of absorption decreases with increased time. The current product could be especially advantageous in agricultural and horticultural applications as a good controlled fertilizer release and for water retention.


Sign in / Sign up

Export Citation Format

Share Document